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Consistent scaling of persistence time in metapopulations
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Abstract. Recent theory and experimental work in metapopulations and metacommun-
ities demonstrates that long-term persistence is maximized when the rate at which individuals
disperse among patches within the system is intermediate; if too low, local extinctions are more
frequent than recolonizations, increasing the chance of regional-scale extinctions, and if too
high, dynamics exhibit region-wide synchrony, and local extinctions occur in near unison
across the region. Although common, little is known about how the size and topology of the
metapopulation (metacommunity) affect this bell-shaped relationship between dispersal rate
and regional persistence time. Using a suite of mathematical models, we examined the effects
of dispersal, patch number, and topology on the regional persistence time when local
populations are subject to demographic stochasticity. We found that the form of the
relationship between regional persistence time and the number of patches is consistent across
all models studied; however, the form of the relationship is distinctly different among low,
intermediate, and high dispersal rates. Under low and intermediate dispersal rates, regional
persistence times increase logarithmically and exponentially (respectively) with increasing
numbers of patches, whereas under high dispersal, the form of the relationship depends on
local dynamics. Furthermore, we demonstrate that the forms of these relationships, which give
rise to the bell-shaped relationship between dispersal rate and persistence time, are a product
of recolonization and the region-wide synchronization (or lack thereof ) of population
dynamics. Identifying such metapopulation attributes that impact extinction risk is of utmost
importance for managing and conserving the earth’s evermore fragmented populations.
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INTRODUCTION

The concept of the metapopulation, a set of local

patches of a single species that are linked by dispersal

(Levins 1969, Hanski and Gilpin 1991, Hanski and

Ovaskainen 2000), has been an important contributor to

our understanding of how biological populations persist,

particularly in harsh environments where localized

extinctions are common. More recently, metapopula-

tions have been embedded into metacommunities, where

local patches comprise pairs or sets of interacting species

(Holyoak and Lawler 1996, Burkey 1997, Kerr et al.

2002, 2006, Holyoak et al. 2005). Classic metapopula-

tion theory used a patch–occupancy approach to

determine how the rates of colonization and extinction

impacted the fraction of patches in a metapopulation

that were occupied at a steady state (Levins 1969, 1970).

However, the deterministic nature of patch–occupancy

models precludes them from estimating the probability

of regional extinction, a desirable quantity for manage-

ment and conservation objectives (Durrett and Levin

1994, Earn et al. 2000). Stochastic patch–occupancy

models (SPOMs) have been developed to project the

probability that any or all patches will be occupied in the

future as a function of local rates of colonization and

extinction, which may in turn depend on a variety of

factors such as patch quality and connectivity (Etienne

et al. 2004). SPOMs are more tractable than individual-

based models, which are hampered by large numbers of

parameters; however, they lack the explicit population

dynamics which give rise to ‘‘mass effects,’’ a net flow of

dispersing individuals between patches generated by

local differences in population size or density (Shmida

and Wilson 1985, Holyoak et al. 2005). Mass effects

alter the probability of recolonization of a patch after a

local extinction because the population dynamics of

neighboring patches are not independent, but tend to be

synchronized by the action of dispersal; thus, patches in

which populations are locally extinct tend be neighbored

by others which may also be locally extinct or on the

brink of extinction (Heino et al. 1997). Where local

environmental heterogeneity acts to maintain local

population dynamics in a state of asynchrony (negative
correlation; Abta et al. 2007, 2008), local extinctions are

often avoided altogether by the inflow of individuals

from nearby patches where populations are at high

abundance (Brown and Kodric-Brown 1977).

The importance of synchronization and mass effects

in metapopulations and metacommunities has been
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most often explored in relation to their effect on the

temporal variance of populations at the regional scale

(Keeling et al. 2000, Dey and Joshi 2006, Hastings and

Wysham 2010, Abbott 2011) and where local temporal

variation in population size is maintained by internal

instabilities such as cycles or chaos (Allen et al. 1993,

Earn et al. 2000). In these circumstances, increasing the

synchrony of population dynamics (via increased

dispersal among populations or via a global environ-

mental effect) always yields greater variance at the

metapopulation level (Loreau et al. 2003).

The link between metapopulation variance and

metapopulation persistence is unfortunately less

straightforward. In the absence of any movement of

individuals among patches (and any widespread envi-

ronmental factors), asynchronous local dynamics are

likely, leading to low metapopulation variance; however,

patches in which extinctions have occurred cannot be

recolonized and the size of the metapopulation contin-

ually shrinks to extinction. Dispersive movement of

individuals increases the potential for recolonization,

but also synchronizes local dynamics, thereby increasing

the temporal variance of the metapopulation and

potentially the extinction risk. Researchers often employ

the coefficient of variation (CV ¼ r/l) as a means of

estimating extinction risk for populations (e.g., Drake

and Griffen 2010) and similar logic has been extended to

metapopulations (Holyoak and Lawler 1996). However,

the CV may not yield a reliable estimate of extinction

risk when nonequilibrium dynamics are important

because variation around the deterministic trajectory

can vary substantially at different points in time (see

section 6 in the Appendix). Studying the trade-off

between dispersal and synchronization therefore re-

quires the incorporation of local population dynamics

(mass effects) into models where local extinction is a real

possibility.

Typically, the types of models used to study mass

effects are unsuitable for studying the processes of local

and regional extinction because local population dy-

namics are generated by deterministic models, which

themselves do not include extinction as a possible

outcome. However, by incorporating stochasticity

(and/or a threshold extinction density) into model

parameters or population size directly, local and regional

persistence has been investigated under the influence of

environmental catastrophes (Lande 1993), resource

scarcity (Bulte and van Kooten 1999), species interac-

tions (Chesson 2000, Keeling and Gilligan 2000, Keeling

2002), or simply due to random fluctuations in the local

rates of birth and death (Lande 1993, Hastings and

Wysham 2010). This latter source of local extinctions,

termed demographic stochasticity (May 1973) is partic-

ularly important when population size is depressed,

which can occur as a consequence of predator–prey

oscillations (Hinrichsen 2000, Holyoak 2000, Keymer et

al. 2000), invasion fronts (Brunet and Derrida 1997,

Sokolov et al. 1997, Kessler and Levine 1998), recent

establishment (Kessler and Shnerb 2008), or when the

landscape is heterogeneous and certain fragments

support only a low density (Missel and Dahmen 2008).

Given that many, if not all, of these patterns and

processes operate locally in metacommunities, demo-

graphic stochasticity can have important consequences

for dynamics and extinction risk even when the regional

population size is large. However, little is known about

how dispersal and metapopulation size interactively

influence the probability of regional extinction when

local dynamics (patches) are prone to extinction due to

one or more of the above mechanisms.

Demographic stochasticity has been the subject of

intensive research, both empirically (Stacey and Taper

1992, Martin et al. 2000, Bonsall and Hastings 2004,

Matthies et al. 2004) and theoretically (Elgart and

Kamenev 2004, Kessler and Shnerb 2007, Kamenev and

Meerson 2008, Ovaskainen and Meerson 2010). A

common approach to modeling demographic stochas-

ticity in deterministic models is to sample the population

size, at each time step, from a Poisson distribution with

an expected value given by the deterministic model

projection from the previous time step (Johst et al.

2002). This generates relatively large variation around

the expected population size when it is small and little

variation when the expected population size is large,

which is consistent with demographic stochasticity.

Although this approach works well for discrete-time

systems where generations are nonoverlapping, it does

not apply to the vast majority of populations, whose

generations overlap. Research on the effects of demo-

graphic stochasticity on continuous-time models has

been particularly lacking, perhaps due to the challenge

of discretizing and randomizing the processes of birth

and death in continuous time. Lande (1993) approached

the issue of modeling demographic stochasticity in a

continuous-time model of simple (linear) population

growth by sampling the per capita growth rate from a

normal distribution with constant mean and a variance

inversely related to population size. Under this scenario,

stochastic calculus can be used to estimate the mean

persistence time. More recently, other methods for

estimating mean times to extinction have been shown

to be sufficiently accurate for single populations (for

review see Ovaskainen and Meerson 2010). However,

the accuracy of these methods, and those employed by

Lande (1993), is appreciably lower at small population

sizes, weakening their utility for metapopulation re-

search. An alternative to directly estimating extinction

times is to use a stochastic simulation algorithm

(Gillespie 1976) that incorporates the randomness of

demographic events in population dynamics and observe

the distribution of outcomes. Although computationally

expensive, the Gillespie is easily applied to ordinary

differential equations, and exactly reproduces their

dynamics for large enough population sizes (Legendre

et al. 2008, zu Dohna and Pineda-Krch 2010).
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In this study we investigated the relationship between

the mean metapopulation persistence time, dispersal

rate, and the number of patches when local population

dynamics are subject to demographic stochasticity.

Additionally, we examined two metapopulation topol-

ogies that form the boundaries for all possible topolo-

gies (where dispersal occurs either between all patches or

along a stepping-stone pathway; Fig. 1; Earn et al.

2000). To generalize our findings, we modeled local

population dynamics using both single-species and two-

species (predator–prey and parasite host) models,

employing both discrete-time models and two continu-

ous-time approaches. We found that a consistent

relationship between metapopulation persistence time

and the number of patches emerges in each of three

dispersal regimes (low, intermediate, and high), giving

rise to the well-known bell-shaped relationship between

persistence time and dispersal. Furthermore, we found

that metapopulation topology impacts only the param-

eters of the scaling rate at intermediate dispersal (with

no effect on the form of the relationship).

MODELING SCHEMES

Deterministic models

We began with a set of six well-studied deterministic

models that provide a mathematical description of the

process of population growth in the absence of space and

noise. This set of models includes both discrete-time

(Logistic map, Ricker map, Nicholson-Bailey host–

parasite model) and continuous-time processes (Logistic

growth, Lotka-Volterra, and Rosenzweig-MacArthur

consumer–resource models; see Table 1) of single-species

systems and of two-species enemy–victim systems. This set

of deterministic models exhibits a range of different

dynamical features that may affect the relationship among

the number of metapopulation patches, dispersal rate,

system topology, and persistence time of the metapopu-

lation. We discuss these features in the next paragraph.

In general, the six deterministic models can each

exhibit a range of qualitative dynamics depending on

parameter values. We highlight two general qualitative

characteristics under which these models can be catego-

rized: (1) Population density may asymptotically ap-
proach the extinction boundary or (2) population density

may asymptotically be bounded to a region that does not
include extinction boundary. This region may be a stable,

nontrivial fixed point (equilibrium), an attractive limit

cycle, or a chaos within a bounded range. A crucial point
is that these deterministic models themselves never

include extinction as a possible outcome; only in the
presence of demographic stochasticity is extinction

possible. However, it is important to consider that the

qualitative behavior of a particular model may make
populations more susceptible to extinction (e.g., due to

low densities on deterministic population trajectories).
Fig. 2 demonstrates the deterministic dynamics of each

of these models (on a single site).

To ensure that extinctions are possible, we extended
the deterministic framework for each of the six models

(Table 1) to include local demographic stochasticity (see

Fig. 2 for typical realizations of the stochastic systems).
This process requires (1) discretization of the population

density in each patch into an integer-measure of
population size and (2) a forward projection method

which incorporates stochasticity in the processes of birth

and death. We implemented demographic stochasticity
in different manners for discrete and continuous-time

models. We give a brief discussion of these methods in
the next subsection and provide a complete description

of the process for each model in the Appendix.

Incorporating stochasticity and dispersal

For the discrete-time models, we built upon the
simulation techniques presented in Ben-Zion et al.

(2010). In general, the number of individuals at time t

þ 1(ntþ1) is a random integer taken from a binomial
distribution B(nt, pt) where nt is given by the total

number of individuals at time t (including offspring
produced by the population at time t), and pt is the

probability that an individual will survive and be

counted in the population at time t þ 1. For example,
using the well-known Ricker model,

xtþ1 ¼ xt 3 exp r 1� xt

j

� �h i

FIG. 1. Examples of how eight patches are interconnected for the (a) stepping-stone (SS) topology and the (b) fully connected
(FC) topology.
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the number of individuals is the nearest integer to nt ¼
erxt and the probability of survival is pt ¼ e�rðxt=jÞ:When

j is large, random fluctuations in births and deaths are

negligible, and since the mean of B(nt, pt) is ptnt, the

stochastic Ricker model converges to its deterministic

representation. In order to facilitate the numerical

methods, we chose parameters such that nt will always

be an integer (r¼ log(17) ’ 2.83).

After the reaction step described in the previous

paragraph, we calculated the diffusion step. Every

individual in every patch emigrates with probability

given by D, and is randomly allotted among all possible

destinations (neighboring patches in the stepping-stone

topology and all other patches in the fully connected

topology; see Fig. 1). In order to avoid an artificial drift

due to updating order, dispersal takes place via a

parallel updating scheme (all emigrants leave all patches

at the same instant to ensure that the same individual

cannot emigrate twice within a time step).

For the continuous-time models we used an event-

driven simulation approach based on the Gillespie

algorithm (Gillespie 1976), which we extended to

incorporate a metapopulation framework. The Gillespie

algorithm assigns relative rates to all possible demo-

TABLE 1. Dynamics features of the studied models.

Model
(deterministic
dynamics) Equation

Species
number

Time
update Xmin Parameters

Logistic growth
dx

dt
¼ k� lþ r

2

� �
x � r

2
x2 1(x) continuous Xmin ¼

k� lþ r
2

� �

r
2

¼ 2 k ¼ 0:2; l ¼ 0:1,
r ¼ 0:2 and 2

Logistic map xtþ1 ¼ rxt 1� xt

j

� �
1(x) discrete Xmin ¼ 0

0 neutral
r ¼ 4, j ¼ 12

Ricker map xtþ1 ¼ xt 3 exp r 1� xt

j

� �h i
1(x) discrete Xmin ’ 0:29 r ¼ log ð17Þ ’ 2:83; j ¼ 4

Nicholson-Bailey Htþ1 ¼ cHte
�cPt

Ptþ1 ¼ bHtð1� e�cPt Þ
2(H, P) discrete Xmin ¼ ð0; 0Þ

(0, 0) attractive
b ¼ 1; c ¼ 2; c ¼ 0:01

Rosenzweig-
MacArthur I

dN

dt
¼ k� lN þ

r
2

� �
N

�r
2

N2 � cPN

1þ cThN

dP

dt
¼ �lPPþ FcPN

1þ cThN

2(N, P) continuous Xmin ¼ ð10; 9:45Þ
(fixed point)

k ¼ 0:2; lN ¼ 0:1; F ¼ 1
lP ¼ 0:1; c ¼ 0:01

r ¼ 10�3; Th ¼ 0:0

Rosenzweig-
MacArthur II

dN

dt
¼ k� lN þ

r
2

� �
N

�r
2

N2 � cPN

1þ cThN

dP

dt
¼ �lPPþ FcPN

1þ cThN

2(N, P) continuous Xmin , 10�10

(limit cycle)
k ¼ 0:2; lN ¼ 0:1; F ¼ 1
lP ¼ 0:1; c ¼ 0:01

r ¼ 10�3; Th ¼ 0:0
r ¼ 2 3 10�6; Th ¼ 0:5

Rosenzweig-
MacArthur III

dN

dt
¼ k� lN þ

r
2

� �
N

�r
2

N2 � cPN

1þ cThN

dP

dt
¼ �lPPþ FcPN

1þ cThN

2(N, P) continuous Xmin ¼ ð5:5; 5:2Þ
(limit cycle)

k ¼ 0:2; lN ¼ 0:1; F ¼ 1
lP ¼ 0:1; c ¼ 0:01

r ¼ 10�3; Th ¼ 0:0
r ¼ 10�3;Th ¼ 0:565

Rosenzweig-
MacArthur IV
(Lotka-Volterra)

dN

dt
¼ ðk� lNÞN � cPN

dN

dt
¼ �lPPþ cPN

2(N, P) continuous Xmin ¼ ð0; 0Þ
(0, 0) neutral

k ¼ 0:2; lN ¼ 0:1; F ¼ 1
lP ¼ 0:1; c ¼ 0:01

r ¼ 10�3; Th ¼ 0:0
r ¼ 0; Th ¼ 0

Notes: In the single-species models, X refers to the population density. In the Nicholson-Bailey model, H and P refer to the host
and parasite densities, respectively, while in the Rosenzweig-MacArthur model, N and P refer to the prey and predator densities,
respectively. See Modeling schemes for clarification of variables.
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graphic events (birth, death, predation, dispersal, and so
on) that are given by the representative functions,

parameters, and current state (population size) of the
continuous-time model. For example, for the Logistic

growth model,

dx

dt
¼ k� lþ r

2

� �
x � r

2
x2 ð2Þ

the (population) birth rate is kx, and the (population)

death rate is

lx þ r
2
ðx2 � xÞ:

Note that alternative representations where the density

dependence is in the birth term, or in both terms, can

also be used. One event is then selected at random (given

their relative probability) and the population state is

updated (e.g. a birth corresponds to the addition of a

single individual). After the event, the simulation clock

is advanced by a random number drawn from an

exponential distribution with a parameter equal to the

sum of all demographic rates; thus, as the number and

rate of events increases (e.g. with larger population size

or higher growth rate), the time between demographic

events decreases. At large population sizes the event-

FIG. 2. The ‘‘deterministic’’ behavior of the population dynamics models vs. their single-patch stochastic equivalents. Five
population dynamics models were studied with different dynamical features (see Table 1). The time evolution of these models is
plotted once for the deterministic case and once for a typical stochastic realization. Time is color coded where blue refers to earlier
times and yellow to later ones. The dotted lines are plotted to illustrate the threshold of a single animal, below which the discrete
system will reach extinction. In the single-species models, X refers to the population density. In the Nicholson-Bailey model, H and
P refer to the host and parasite densities, respectively, while in the Rosenzweig-MacArthur model, N and P refer to the prey and
predator densities, respectively.
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driven simulations converge to the deterministic solution

of the ordinary differential equation model on which

they are based.

We embedded the dispersal term in the event-driven

simulation framework and, as in the discrete-time case,

emigrants were randomly assigned to available destina-

tions as defined in the second paragraph of this section.

Stochastic analogues of the deterministic models for a

single site are shown (a typical realization) in Fig. 2.

Numerical simulations

We factorially combined the six deterministic models,

metapopulation sizes (in most cases, 2 to 64 patches by

powers of two; in the other cases where T (mean

persistence time) was too large to simulate in a

reasonable time, we limited the considered sizes to

smaller numbers), and the two metapopulation topolo-

gies. For each combination we performed between 105

and 106 simulations. Simulations were initialized at the

nearest integer to the nontrivial fixed point (which was

unstable for some models) and allowed to run until the

population reached zero individuals (in the two-species

model we stopped the simulation when one of the

populations went extinct). For the Logistic map we

initialized the system randomly between 1 and j� 1. We

calculated the mean persistence time for each combina-

tion. For the continuous-time models shown in Fig. 2,

we used R package odesolve (Setzer 2008); for discrete

models and stochastic simulations, custom programs

were written in C/Cþþ using Gnu Scientific Library

(GSL; Galassi et al. 2003) and were analyzed using R (R

Development Core Team 2010). All stochastic simula-

tions were carried out using a high-performance cluster

(Bulldog K, Yale University, New Haven, Connecticut,

USA) consisting of 1536 Intel Xeon (E5410) cores.

RESULTS

All models, with the exception of the continuous-time

Logistic growth model, exhibited a maximum in the

mean persistence time of the metapopulation at an

intermediate dispersal rate (Figs. 3 and 4, and Appen-

dix). As the number of patches in the metapopulation is

FIG. 3. Scaling of mean metapopulation persistence time (T ) vs. patch number (L) for the three dispersal regimes. In the upper
panel, T is plotted against the (per capita) dispersal rate (D) for different system sizes (L) for the Lotka-Volterra model embedded
in a fully connected topology. The three dispersal regimes (weak, intermediate, and strong) are shaded with different levels of gray
and are denoted by I, II, and III, respectively. Both axes have a log scale. The lower panels (b–d) show T vs. L in the three dispersal
regimes: (b) in the weak regime, T scales logarithmically with L (which is shown on a logarithmic scale); (c) in the intermediate
regime, T (logarithmic scale) scales exponentially with L; and (d) in the strong regime, scaling is nonuniversal. Here, the marginally
stable dynamics of the Lotka-Volterra system impose a linear scaling of T with L.
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increased, the mean metapopulation persistence time

increases for all dispersal rates (Figs. 4–6); however, it

increases disproportionately quickly at the dispersal rate

that generates the maximum persistence time. In the

following sections we describe how the addition of

patches interacts with the dispersal rate to generate

particular functional (scaling) relationships between

metapopulation persistence and number of patches.

Because of the generality of this result for all but one

model, we discuss the results without reference to

specific models (but see the Appendix, where each

model is discussed in detail separately).

The effect of patch additions on

metapopulation persistence

Adding patches to the metapopulation always in-

creases the mean metapopulation persistence time;

however, the form of the relationship between patch

number and metapopulation persistence depends on the

dispersal rate. In the following sections, we discuss the

observed relationship and expectations derived from

theory in three dispersal regimes: low, intermediate, and

high dispersal, and we describe the characteristic

transitions between these regimes.

Low dispersal.—The low-dispersal regime is defined

by values of the dispersal rate at which local extinctions

occur more quickly, on average, than the rate at which

immigrants are received from adjacent patches. This

range therefore extends from D¼0 to a critical value D1.

Below D1, the system segregates spontaneously into

independent spatial domains, each of these domains may

contain one or more patches. These domains are

effectively disconnected, and within each domain, the

rate of extinction is larger than the rate of colonization.

FIG. 4. Scaling relationships for all models in the intermediate-dispersal regime. Under intermediate-dispersal rates, all models
demonstrate an exponential scaling of T with L. In all plots, extinction is measured in units of the mean persistence time of a single
patch. Dashed lines represent the fully connected (FC) topology, whereas dotted lines represent the stepping-stone (SS) patch
topology. In all panels, the y-axis is on a logarithmic scale.
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(Hinrichsen 2000, Keymer et al. 2000, Oborny et al.

2005). The probability that one patch (or one spatial

domain) undergoes an extinction at time t is propor-

tional to exp(�t/s), where s is the mean persistence time

(see Appendix). The persistence time of the whole

metapopulation is equal to the persistence time of the

longest lived of L independent patches or domains. The

maximum of L independently and identically distributed

random variables from an exponential probability

distribution generates a logarithmic relationship be-

tween the number of patches L, and the metapopulation

persistence time (Ewens and Grant 2005). Fig. 5 shows

this logarithmic scaling in the low-dispersal regime for

all models studied here. It is important to note that, for

most practical purposes, this logarithmic scaling implies

that adding more patches will have little noticeable

impact on metapopulation persistence.

As D increases from zero towards the critical value

D1, the size and lifetime of the domains increases, but

the same considerations still hold. At D1 a well-

understood phase transition occurs (Snyder 2000,

Mobilia et al. 2006, Kessler and Shnerb 2010) and the

metapopulation forms a single domain, allowing recol-

onization of an extinct patch even when the nearest

occupied patch is many dispersal steps away. This marks

the transition to the intermediate-dispersal regime.

Intermediate dispersal.—At intermediate dispersal

rates, immigrants arrive in patches more frequently than

local extinctions occur, but the dispersal is not strong

enough to synchronize local variations across the

system. Accordingly, this is the most extinction robust

scenario. The lack of synchronization ensures that

dynamics (including extinction and recolonization

events) occur independently in each patch; moreover,

recolonization occurs quickly enough as to ensure a high

proportion of patches are typically inhabited. Even

when local dynamics are extinction prone, the meta-

population as a whole can exhibit a stable equilibrium

(Hastings 1993, Ben-Zion et al. 2010, Kessler and

Shnerb 2010), causing the persistence time to scale

exponentially with the number of patches L. Fig. 4 shows

the observed exponential relationship from our simula-

tions in all six models. One way to gain intuition about

the form of this relationship is to assume that patches

are immediately recolonized after a local extinction.

Then, metapopulation extinction requires a regional

catastrophe: A stochastic event in which all patches are

simultaneously, but in this case independently, driven to

extinction. Such an event can be approximated as L

independent Bernoulli trials, each with probability p of

an extinction. The probability of a global extinction in

this case will have probability pL, which implies that the

time until such an extinction will be proportional to p�L,

thus giving rise to the observed exponential scaling.

The endpoint of the intermediate-dispersal regime is

D2(L). Above this value, global synchrony occurs and

regional catastrophes are no longer rare. If the meta-

community is fully connected this transition occurs

sharply (aboveD2, independent of the number of patches)

as dispersal rate is increased, but for any other topology

the number of patches can influence the ability of dispersal

to generate global synchrony (Strogatz 1988, Yanchuk

2001); for any fixed dispersal rate, global synchrony

collapses above a certain system-size (Earn et al. 2000).

High dispersal.—The high-dispersal regime covers the

range of dispersal rates that lead to synchronized local

dynamics across the entire metapopulation. This regime

extends, in the limiting case, to an infinite dispersal rate

that is equivalent to assuming that the metapopulation

operates as a single large, fully homogenized patch.

Increasing the number of patches is equivalent to

increasing the carrying capacity of a population

inhabiting a single patch (provided that dispersal rates

are high enough to ensure that adding patches does not

interfere with synchronization). Under these conditions,

the scaling of metapopulation persistence time with the

number of patches depends upon characteristics of the

deterministic dynamics which govern each patch.

An important quantity for determining how increas-

ing patch numbers will alter metapopulation persistence

in the high-dispersal regime is the minimum value

FIG. 5. Scaling relationships for all models in the low-
dispersal regime (zero). Under low (zero) dispersal rates, all
models demonstrate a logarithmic scaling of persistence time
(T ) with patch number (L, on a logarithmic scale). In all
models, extinction is measured in units of the mean persistence
time of a single patch.
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encountered along a trajectory of the deterministic

model. We formally define this value, Xmin, as the

minimum value encountered on the deterministic

trajectory between T/2 and T, as T goes to infinity

given that the system was initiated arbitrarily close to

zero (for a formal mathematical expression see section 5

in the Appendix). A second important quantity is the

variation imposed by demographic stochasticity (or

more generally any stochastic component) at or near

Xmin:rXmin
. The latter component is a compromise

between the variation imposed by stochasticity (which

for demographic stochasticity is roughly proportional toffiffiffiffiffiffiffiffiffi
Xmin

p
and the attractiveness of the deterministic

trajectory at that point in time, usually defined as the

Lyapunov exponent). Although in some cases it is

possible to analytically determine these two quantities,

they can both be easily estimated numerically from

many realizations of the deterministic and stochastic

models. Here we provide a scheme to classify the

potential relationships between metapopulation persis-

tence and patch number based on these two quantities

(see Fig. 7):

1) Xmin 6¼ 0

a) IfXmin 6¼ 0 andXmin . rXmin
, stochastic trajectories

rarely generate extinctions. In this case, the actual

probability of extinction can be extracted by

measuring the area of a normal distribution with

mean and variance Xmin, which overlaps the

extinction boundary (recall that the standard

deviation due to demographic stochasticity is

approximately
ffiffiffiffiffiffiffiffiffi
Xmin

p
(van Kampen 1992, Lande

FIG. 6. Scaling relationships for all models in the high-dispersal regime (infinite). Under high (infinite) dispersal rates, the
scaling depends on the properties of the local dynamics (see Results: High dispersal and the Appendix for more details and for the
rest of the models studied here). In all plots, extinction is measured in units of the mean persistence time of a single patch. T is
shown on a logarithmic scale in panels (a)–(c), (e), and (g); L is on a logarithmic scale in panels (b), (d), and (f ).
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1993). As patches are added to the system, Xmin

increases and this area decreases exponentially,

resulting in an exponential increase of mean

persistence time. This logic can be easily extended

to multispecies systems by employing a multivar-

iate normal distribution. Examples of this kind in

our analysis are Logistic growth, the Ricker map,

and Rosenzweig-MacArthur I and III (see Fig. 6).

b) If Xmin 6¼ 0 but Xmin� rXmin
, stochastic trajectories

often lead to extinctions. In this case the initial

effect of adding patches to the system will increase

metapopulation persistence according to a power

law until patch additions yield Xmin . rXmin
, at

which point the exponential dependency described

in the previous paragraph will occur. Examples of

this are Logistic growth and Rosenzweig-MacAr-

thur III until L¼ 20 (Fig. 6 and Appendix).

2) Xmin ¼ 0

a) Attractive absorbing state: If Xmin¼ 0 and zero is

also an attractive equilibrium point (as in the

Nicholson-Bailey host–parasitoid model), the

population size will deterministically flow to less

than one individual generating an extinction in the

stochastic model. Because the initial rate of

population decline increases with initial popula-

tion size, adding more patches, which is equivalent

to a single patch initialized at a larger population

size, will result in a logarithmic increase in

metapopulation persistence (Fig. 4d).

b) Marginal absorbing state: In most systems, the

ratio between Xmin to rXmin
is a function of the

number of patches. However, for some dynamics,

Xmin is always smaller than rXmin
. This may happen

if Xmin¼ 0 (but is not an attractive state), e.g., for

the chaotic Logistic map, or when r may grow

unboundedly, like in the marginally stable Lotka-

Volterra model. In these cases, the effect of adding

more patches increases metapopulation persistence

time according to a power law. For the Lotka-

Volterra model, the power law with exponent

equals 1 (Figs. 3 and 6h); this has been previously

reported in this system by Reichenbach et al.

(2006) and Parker and Kamenev (2009). For the

chaotic Logistic map, this relationship depends on

the probability of encountering population sizes in

the vicinity of the extinction boundary. As the

number of patches grows (increasing the effective

carrying capacity), the probability of encountering

near extinctions decays as approximately as L�1/2.

Thus, metapopulation persistence grows as a

power law with exponent 1/2 (Fig. 6b).

FIG. 7. Flow chart to determine the scaling properties of mean metapopulation persistence time with the number of patches in
the high-dispersal regime. The scaling of mean persistence time with patch number depends on the quantities Xmin and rXmin

, which
can be estimated deterministically or from time series data (see Results: High dispersal ). Panel (b) shows an example of a
population time series that fits into category 1a in the Results: High dispersal; panel (c) shows an example of category 1b, panel (d)
for category 2a, and panel (e) for category 2b. Abbreviations are: r, per capita growth rate; j, carrying capacity; and g, exponent
that govern the power law dependency between mean persistence time (T ) and the number of patches (L).
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One case worth mentioning is the Rosenzweig-Mac-

Arthur II system, in which Xmin is extremely small but not

zero (,10�10). This case behaves effectively like the

Nicholson-Bailey system (attractive absorbing state) since

we study it with a relatively small number of patches.

Ultimately, we expect it to switch to the exponential

regime, but the number of patches required to generate

this switch is too large to simulate in a finite time.

The effect of topology

In the limiting cases where the dispersal rate is zero or

infinite, there is no effect of the connectivity topology on

the metapopulation. Likewise, when dispersal is weak or

strong (according to our above classifications), topology

has a very limited effect. Only when dispersal is

intermediate in strength does topology play an impor-

tant role. Fig. 4 shows that the topology of the system

determines the exponent that relates the mean persis-

tence time of the metapopulation to that of a single

patch, but does not alter the exponential nature of the

relationship between mean persistence time and the

number of patches in the metapopulation.

DISCUSSION

Herein we demonstrate that a wide variety of popula-

tion models have a ubiquitous set of scaling laws

determining how metapopulation persistence increases

with the number of patches. With weak dispersal

(recolonization events are rarer than extinction events)

the mean persistence time grows logarithmically with the

number of patches. However, with intermediate dispersal

(recolonization events are more frequent than extinction,

but local dynamics remain asynchronous), the mean

persistence time grows exponentially with the number of

patches, even when local dynamics are unstable and

extinction prone. When dispersal is strong enough to

induce regional coherence in local dynamics, the relation-

ship between mean persistence time and system size

depends on the stability of local dynamics; however, it is

important to consider that in this regime the metapopu-

lation is acting as a single large homogeneous patch rather

than the traditionally defined set of interconnected

patches with local demographic processes. In all cases

where the stochastic system is mademore extinction prone

due to synchronization (all models studied here except

Logistic growth) intermediate dispersal maximizes persis-

tence. Logistic growth is exceptional since it does not

support oscillations, and synchronization does not

increase the extinction risk. The other models studied

here either support oscillations directly in the form of

attractive limit cycles (Rosenzweig-MacArthur II and III)

or indirectly as having a focus fixed point (Rosenzweig-

MacArthur I, Lotka-Volterra, and Nicholson-Bailey) or

their chaotic trajectories oscillate between different

domains (Logistic map and Ricker map). Together, these

scaling relationships are responsible for the bell-shaped

relationship between mean persistence time and dispersal

rate observed in metapopulation models (Holyoak and

Lawler 1996, Ellner et al. 2001, Kerr et al. 2002, 2006,

Kneitel and Miller 2003, Molofsky and Ferdy 2005, Dey

and Joshi 2006). A clear prediction arising from our work

is that such a relationship should be far more pronounced

in systems with a larger number of patches (for an

example, see Fig. 3).

The emergence of a common set of scaling laws across

single-species and multispecies models, discrete-time and

continuous-time models, and stable and unstable local

dynamics, suggests the process of demographic extinc-

tion in metapopulations is decoupled from local

population demography itself. Rather, the scaling of

mean persistence time with system size is driven by the

colonization–extinction balance that is explicit in many

metapopulation models (Levins 1969, Hanski 1991,

FIG. 7. Continued.
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Barton et al. 1997, Loreau and de Mazancourt 2008),

but here arises from mass effects, spatial dynamics,

demographic stochasticity, and synchronization. What

is surprising is that mass effects have little bearing on the

scaling behavior of persistence with system size. Both

weak and strong dispersal lead to a paucity of

colonization events relative to extinctions; in the former,

this is due to low movement rates from extant patches,

and in the latter, this is due to a regionally correlated

extinction risk leaving few or no recolonists. At some

intermediate dispersal rate, the colonization–extinction

balance emerges. This alludes to the compelling idea that

synchrony (or lack thereof ) of populations across a

landscape may be a more important feature of the

system than population demography itself. Indeed,

many authors have already begun to address the

importance of synchrony for regional-scale properties

of metapopulations and metacommunities (Earn et al.

2000, Earn and Levin 2006, Vasseur and Fox 2009,

Gouhier et al. 2010).

Realistic attempts to predict the probability of

regional extinction require both demographic and

environmentally stochastic elements. Like dispersal,

environmental stochasticity has the capacity to generate

regional-scale synchrony if it operates at the regional

scale (Hanski 1991). In such instances, regional-scale

population synchrony could be reached at low to

intermediate dispersal rates, leading the metapopulation

to behave as a single well-mixed local patch, changing the

scaling behavior and sharply reducing mean persistence

times. Alternatively, if environmental fluctuations are

independent at each local patch, or if population

demographics are locally heterogeneous, higher dispersal

rates can be tolerated before the system behaves as a

single well-mixed system. Moreover, the ability of

dispersal to synchronize an entire metapopulation wanes

as more patches are added, reducing the likelihood of

regional-scale synchrony. Hanski (1991) argued that a

logarithmic scaling of persistence time with population

size suggested an environmental basis for extinction,

whereas exponential scaling suggested a demographic

basis for extinction. Our work demonstrates that both

patterns can emerge from demographic stochasticity

alone when the degree of dispersal is varied from weak to

intermediate. When viewed in this light, it is possible that

the addition of environmental stochasticity may not

generate any novel behaviors in the system, but rescale

the action of important parameters like dispersal rate.

Nevertheless, a combined approach addressing both

demographic and environmental stochasticity may be

particularly important when the synchronizing effect of

environmental stochasticity does not span the entire

region but reaches beyond a single patch.

Current anthropogenic activities are continually

fragmenting viable habitats into smaller but potentially

more numerous patches. In such cases, calculating the

viability of the metapopulation is complicated by a

number of confounding impacts including an increased

risk of local extinction by demographic stochasticity

(Ewers and Didham 2006). Our analysis differs from

fragmentation models because the mean risk of local

extinction is fixed by the model and parameters, but is

independent of the number of patches. Ours is a patch

addition rather than patch fragmentation approach,

determining the rate at which mean persistence time

increases as previously unexploited patches are occupied

(or, alternatively, as previously exploited patches are lost

from the system). In this respect, one could consider the

scaling of mean persistence time as an important proxy

for the success of an invader as it undergoes initial range

expansion. Extending our approach to cases where

patches are fragmented rather than added is a rather

obvious and urgently necessary next step. Our demon-

stration that the scaling properties of metapopulation

persistence are conservative across a wide range of local

demographic constraints suggests that regional synchro-

nization (or lack thereof ) is the most important

indicator of sensitivity to patch addition or patch loss.

Estimating the local susceptibility to extinction (e.g.,

Fig. 7) in addition to regional synchronization will

provide further insight into metapopulations that are

tightly coupled by high dispersal rates.
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SUPPLEMENTAL MATERIAL

Appendix

Details of numerical procedures and further analysis of the specific models considered (Ecological Archives E093-104-A1).
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