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 Standing stocks are typically easier to measure than process rates such as production. Hence, stocks are often used as indica-
tors of ecosystem functions although the latter are generally more strongly related to rates than to stocks. Th e regulation of 
stocks and rates and thus their variability over time may diff er, as stocks constitute the net result of production and losses. 
Based on long-term high frequency measurements in a large, deep lake we explore the variability patterns in primary and 
bacterial production and relate them to those of the corresponding standing stocks, i.e. chlorophyll concentration, phyto-
plankton and bacterial biomass. We employ diff erent methods (coeffi  cient of variation, spline fi tting and spectral analysis) 
which complement each other for assessing the variability present in the plankton data, at diff erent temporal scales. In 
phytoplankton, we found that the overall variability of primary production is dominated by fl uctuations at low frequen-
cies, such as the annual, whereas in stocks and chlorophyll in particular, higher frequencies contribute substantially to the 
overall variance. Th is suggests that using standing stocks instead of rate measures leads to an under- or overestimation of 
food shortage for consumers during distinct periods of the year. Th e range of annual variation in bacterial production is 
8 times greater than biomass, showing that the variability of bacterial activity (e.g. oxygen consumption, remineralisation) 
would be underestimated if biomass is used. Th e P/B ratios were variable and although clear trends are present in both 
bacteria and phytoplankton, no systematic relationship between stock and rate measures were found for the two groups. 
Hence, standing stock and process rate measures exhibit diff erent variability patterns and care is needed when interpreting 
the mechanisms and implications of the variability encountered.   
 Th e variability of ecosystem functions and the processes 
which infl uence them are currently of focal interest, for 
example in the context of the diversity – variability debate 
(Loreau 2000, Hooper et al. 2005) and for predicting the 
consequences of land use and climate change (Fay et al. 
2009, Felzer et al. 2009). Th e quantity and temporal vari-
ability of ecosystem functions are frequently inferred from 
measurements of standing stocks, such as biomass and chlo-
rophyll concentration (Tilman et al. 1996, 1997, van der 
Heijden et al. 1998, Hector 1999, Huston et al. 2000, Lu 
2006) since they are often easier to measure than process 
rates. However, standing stocks constitute the net result of 
production and losses and may exhibit variability patterns 
which diff er from those of the process rates. In fact, some 
previous studies acknowledged the necessity of distinguish-
ing standing stocks from ecosystem functions (Petchey 
2003) and suggested that standing stocks may be less able 
to capture trophic level eff ects than process rate measures 
(Srivastava et al. 2009). 

 Standing stocks are linked to process rates as the latter 
are infl uenced by the amount of biomass available at a par-
ticular time. However, process rates are also governed by 
mass specifi c rates, that is, how much the available biomass 
is actually processing given the biotic and abiotic factors 
infl uencing it. Using standing stocks as surrogates for pro-
cess rates assumes the mass specifi c rates to be constant, 
which is known to be equivocal (Begon et al. 2006). Pro-
cess rates are infl uenced by abiotic factors such as tempera-
ture and light availability, and biotic mechanisms such as 
the life history strategy of the dominant species and the 
extent of predation pressure. Hence, production, which 
is here of focal interest as it sustains the biomass of the 
higher trophic levels and is linked to numerous ecosystem 
functions, may be strongly infl uenced by density depen-
dent factors at a multitude of time scales. For autotrophs, 
self-shading is well known to reduce the mass specifi c pro-
duction (P/B ratio) when high plant biomass is attained; 
primary production levels off  at high abundance (H ä se 
et al. 1998) resulting in a negative density dependence. 
Th e opposite pattern has been observed for bacteria which 
show increasing P/B ratios with biomass when resources are 
abundant. Under these conditions, the mean growth rate 
of the bacterial community also increases because a higher 
portion of the previously metabolically inert cells becomes 
active (Simon and W ü nsch 1998). 

 Th e present study investigates the variability in produc-
tion and stock values and in P/B ratios in two contrasting 
models  –  negatively density-dependent phytoplankton and 
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positively density-dependent bacteria  –  in order to test the 
relationship between standing stocks and production. Long 
term high-frequency measurements of both standing stocks 
and production of bacteria and phytoplankton were con-
ducted in Lake Constance, making it an excellent case to 
explore the potential relationships between the two. Phyto-
plankton biomass, chlorophyll concentration and bacterial 
biomass constitute our standing stocks measurements and 
their variability patterns will be compared to direct simul-
taneous measures of primary and bacterial production in 
the same water body. Both stocks and production levels are 
strongly driven by physical factors in this system but vari-
ability also arises from endogenous food-web interactions 
during the growing season (Vasseur et al. 2005). 

 Th e variability of natural populations and communities 
is scale-dependent (Vasseur et al. 2005, Keitt and Fischer 
2006, Vasseur and Gaedke 2007) and their quantifi cation 
is subject to numerous potential sources of error (McArdle 
et al. 1990, Gaston and McArdle 1994). Th ere is not one 
single measure which accounts for all aspects of variability 
and as a consequence, diff erent complementary techniques 
were used and compared. In particular, we analyze the total 
amount of variability using the coeffi  cient of variation, 
the main annual patterns using a spline approach and the 
frequency-resolved variability pattern of the long time series 
using spectral analysis, since diff erences in variability pat-
terns at one frequency may be obscured by coherence at 
others (Micheli et al. 1999, Vasseur et al. 2005, Downing 
et al. 2008). 

 Stocks are often used as surrogates to infer the variability 
patterns of process rates and ecosystem functions due to the 
lack of process rate estimates (Cardinale et al. 2006). Over-
all, our objective is to evaluate the predictive power of stocks 
for process rates given that standing stocks and process rates 
depend on numerous diff erent factors acting at diff erent 
temporal scales. In particular, we examine the deviations 
between stock and rates, notably in respect to density depen-
dence factors. A better understanding of the diff erences in 
their variability patterns is of outstanding importance for 
ecosystem and food web research.  

 Study site, material and methods  

 Data acquisition 

 Upper Lake Constance (Bodensee) is a large (472 km 2 ), 
deep (depth  �  101 m) temperate lake located at approxi-
mately 47 ° 40’N, 9 ° 20’E and bordered by Germany, Swit-
zerland and Austria. Warm-monomictic Lake Constance 
underwent a re-oligotrophication process with a decline of 
total phosphorus concentrations (the most limiting nutrient 
for phytoplankton) from  �  80 in 1979 to 17  μ g TP l �1  in 
2000, resulting in a pronounced phosphorus depletion in the 
epilimnion during summer (G ü de and Gries 1998). Mean 
annual phytoplankton biomass declined by a factor of 
2 with phosphorous decline and mean chlorophyll con-
centration and primary production showed no signifi -
cant decrease between 1980 and 1997 (Gaedke 1998, 
H ä se et al. 1998), indicating that the long-term changes 
are very small compared to the seasonal dynamics 
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(Vasseur and Gaedke 2007). Plankton sampling and pro-
duction measurements were conducted weekly during 
the growing season and approximately fortnightly in winter 
by a large team of scientists, culminating in extended time 
series ’  for phytoplankton biomass (1979 – 1999), chlorophyll 
concentration (1980 – 2000), primary production (1980 –
 1998) and bacterial biomass and production (1990 – 1997). 
Abundances and production of both phytoplankton and 
bacteria were assessed as described in Gaedke 1998, Simon 
et al. 1998 and H ä se et al. 1998. Production estimates were 
obtained independently of biomass using 4 h in situ incuba-
tion with  14 C (primary production) and with  3 H-thymidine 
and  14 C-leucine using the dual label approach (bacterial pro-
duction). All measurements are provided per unit area and 
comprise the biomass and production within the uppermost 
water layer from 0-20 m depth, which roughly corresponds 
to the epilimnion and the euphotic zone. Prior to the spline 
and spectral analyses we log-transformed the biomass and 
production measurements to account for their long-tailed 
residual distribution, given that the seasonal variation 
covered approximately two orders of magnitude (Gaedke 
1998). We then applied each of the following measures 
to phytoplankton biomass, chlorophyll concentration, pri-
mary production, bacterial biomass and production and the 
P/B ratios (primary production/phytoplankton biomass, 
primary production/chlorophyll concentration and bacte-
rial production/bacterial biomass).   

Coeffi cient  of variation 

 Th e overall variability was estimated using the coeffi  cient of 
variation (CV), which is the ratio of the standard deviation 
to the mean. Th e CV allows comparison of measures with 
diff erent units or diff erent means. In order to statistically 
compare the CVs among the diff erent variables, we calcu-
lated the CV per year for each time series and applied a non 
parametric Wilcoxon-test. Th e CVs of the P/B ratios were 
not computed as we do not expect a mean-variance scaling 
relationship.   

 Spline fi tting 

 Splines were used to separate the general seasonal signal 
of each measure from measurement noise. Th erefore, we 
assumed only seasonal dependency for the measure in ques-
tion, which is continuous and smooth. In order to fi nd this 
seasonal pattern, we looked for a periodic function approxi-
mating the data; that is an optimal compromise between data 
fi t and smoothness. Th e function is optimal in the sense that 
it minimizes 
 for the data points (x( τ  i ),  τ  i ), x being the time lapsed since 
1 January of the running year. A function solving this mini-
mization problem is called a spline (for details see Wahba 
1990). Th e measurement y i  is the sum of the signal f(x i ) 
and the noise. Th e smoothing parameter λ, controlling the 
tradeoff  between data fi t (fi rst term) and smoothness (second 
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term), is optimal when it minimizes the expected prediction 
error. It is determined by means of generalized cross valida-
tion (Craven and Wahba 1979). 

 We dealt with this fi tting problem using a statistical point 
of view as described in Craven and Wahba (1979). With 
this approach, we can fi t the curve and, in addition, give 
a well interpretable confi dence interval for the  ‘ true ’  curve. 
Th e spline can then be interpreted as the expectation for the 
measurement depending on the time of the year. Th e confi -
dence intervals give the uncertainty for the measured value 
(Wood 2004).   

 Spectral analysis 

 Fourier analysis can be used to represent data measured over 
time (or space) as the sum of many cosine waves of diff erent 
frequencies. At each frequency the squared amplitude or 
 ‘ power ’  is proportional to the amount of the temporal vari-
ance it explains, and together the frequencies and squared 
amplitudes are known as the periodogram. Periodogram 
estimates are typically averaged over a number of frequen-
cies to generate the spectrum (Chatfi eld 2004) which 
has a well described statistical distribution for a variety 
of noise models. Traditional methods of spectral analysis 
use a Fourier transformation to generate the periodogram, 
which requires data sampled at evenly spaced intervals. 
We employed an alternative method, the Lomb – Scargle 
periodogram (Lomb 1976, Scargle 1982) which takes into 
account an uneven distribution of sampling events. At each 
frequency the Lomb – Scargle periodogram represents the 
contribution of this frequency to the sum-of-squares. Nor-
malizing the periodogram by twice the variance of the time 
series generates a  χ  2  distribution against which the signifi -
cance of peaks can be established (Scargle 1982), given an 
appropriate null model. 

 We calculated the Lomb – Scargle periodogram using the 
algorithm provided by Press et al. (2001) and estimated the 
signifi cance of peaks in the periodogram using an iterative 
algorithm adapted from Horne and Baliunas (1986). For 
each time series we generated ten thousand I.I.D. (indepen-
dent and identically distributed) random normal datasets, 
with the same mean, variance and sampling distribution 
as the observed dataset. We selected the largest values from 
each of the ten thousand periodograms to construct the 
background distribution. We set the false detection prob-
ability as the 95th percentile of this distribution, which is 
represented as a horizontal line in the periodograms. Since 
biological variables typically show power which decreases 
with frequency according to an inverse power law 1/f β 
(Inchausti and Halley 2002, Vasseur and Yodzis 2004) we 
estimated  β  as the slope of a log-log regression of power on 
frequency and added the trend to our null model in order 
to consider the same amount of colored noise prior to esti-
mating the signifi cance of the peaks in the periodogram. 
Given a signifi cant peak, we estimated the amplitude and 
phase according to the method of Hocke (1998). On top of 
the periodograms, we obtained for each variable a harmonic 
model S( τ  i ) representing the data in a period equivalent to 
the annual frequency as the sum of n cosine waves of the 
n signifi cant frequencies f 1, …,  n  with respective amplitudes 
A 1, …,  n  and phases  Φ  1, …,  n : 
 Furthermore, the area under the curve of each periodogram 
corresponds to the total variance present in the data. Th e 
relative contribution of each signifi cant frequency to the 
total variance was calculated as the percentage of the total 
area under each peak. All analyses were performed using R 
ver. 2.6.0 for Windows (2007).    

 Results  

 Amount of total variability 

 Th e CV reveals a similar amount of total variability for the 
phytoplankton stock and production measures. Primary 
production exhibits a CV of 80%, followed by chloro-
phyll concentration with 91% and phytoplankton biomass 
with 93% (no signifi cant diff erences). Th e CV of bacterial 
biomass and production are very diff erent, and in contrast 
to phytoplankton, the CV of production (CV  �  90%) 
signifi cantly exceeds that of biomass (CV  �  41%) (p-value  �  
0.001, W  �  49).   

 Splines and harmonic S( τ  i ) models 

 Th e splines indicate that the annual patterns for phytoplank-
ton biomass, chlorophyll concentration and primary pro-
duction are governed by similar processes and are generally 
characterized by low winter values followed by a spring bloom, 
a clear-water phase, a summer bloom, and a descent towards 
low winter values (Fig. 1). Beyond this overall bimodal pat-
tern, diff erences are found among the diff erent measures. 
First, in chlorophyll, the spring bloom is more pronounced 
than the summer bloom; this pattern is weaker in primary 
production and non-existent in biomass. Secondly, the clear-
water phase is less pronounced in primary production than in 
both measures of stocks. Th ird, primary production exhibits 
a larger annual amplitude than the standing stocks measures 
by reaching relatively higher values during the growing sea-
son and lower ones during winter. Fourth, the splines suggest 
minor deviations in the timing between stock and process 
rate measures (Fig. 1f ). Th e harmonic S( τ  i ) models are in 
agreement with the splines, except for primary production, 
for which only the annual frequency is captured (Fig. 1c). 
Th e splines of bacterial biomass and bacterial production 
show a less complex seasonal pattern than the phytoplankton 
measures (Fig. 2a – b). Both splines follow the same pattern of 
low winter and high summer values, with little intra-seasonal 
fl uctuations, but the range of annual variation of the bacterial 
production spline is 8 times greater than biomass (Fig. 2d). 
Th e corresponding harmonic S( τ  i ) models capture only the 
annual cycle for both measures, with very diff erent ampli-
tudes between bacterial biomass and production. 

 Th e diff erences in the seasonal patterns between standing 
stocks and production are refl ected in the seasonal patterns 
of the mass-specifi c rates which are not constant in time but 
vary up to a factor of 4 for phytoplankton (Fig. 1d – e) and 8 
for bacteria (Fig. 2c) throughout the season. An annual cycle 
remains in the P/B ratios with low winter and high summer 
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values for all measures, and in particular for the bacterial 
P/B. In phytoplankton, the clear-water phase is inverted in 
the P/B ratios as the primary production shows a less pro-
nounced clear-water phase than phytoplankton biomass and 
chlorophyll concentration.   
20
 Periodograms and phase, amplitude and contribution 
to the overall variance of independent peaks 

 Th e periodograms of phytoplankton biomass, chlorophyll 
concentration and primary production are represented in 
  Figure 1.     Splines (colored lines), their 95% confi dence interval (dashed colored lines), raw time series (grey lines) and harmonic models 
(black curves) of: (a) phytoplankton biomass (Phyt biomass) (dark blue), (b) chlorophyll concentration (Chl concentration) (dark green), 
(c) primary production (PPR) (salmon), (d) ratio between primary production and phytoplankton biomass (PPR/Phyt) (light blue), and 
(e) ratio between primary production and chlorophyll concentration (PPR/Chl) (light green). (f ) Splines of Phyt biomass, Chl concentra-
tion, PPR, PPR/Phyt and PPR/Chl with the same colors as described above. Th e three solid vertical lines correspond in order of time 
to spring bloom (SpB), clear water phase (CWP) and summer bloom (SuB) in phytoplankton biomass. Units: Phytoplankton biomass 
(gC m –2 ), Chlorophyll concentration (mg Chl m –2 ), primary production (g C m –2  d –1 ). Note the log 2  scale on the y-axis.  



Fig. 3 and phase and amplitude information are synthesized 
in Fig. 4. Th e presence of diff erent signifi cant frequencies 
in the periodograms indicates that the measures vary at dif-
ferent temporal scales. Th e phytoplankton biomass periodo-
gram has signifi cant frequencies of 1-, 3-, 4-, 5- and 6- cycles 
per year and the amplitude of the annual is clearly larger 
than those of the other cycles (Fig. 3a). Chlorophyll concen-
tration is driven by the same frequencies as in phytoplankton 
biomass and, in addition, by the frequencies of 2- and a new 
frequency of approximately 4-cycles per year (precisely an 
88-day cycle) (Fig. 3b). Here, the annual frequency is also the 
largest frequency but higher frequencies play an important 
role as well. Th e primary production diff ers greatly from the 
other measures; the annual amplitude is relatively larger here 
than in other measures (Fig. 3b) and is accompanied by a sec-
ond frequency close to the annual (corresponding precisely 
to a 321-day cycle) which has a much lower amplitude than 
the annual. Regarding the P/B ratios, signifi cant frequencies 
remain throughout the year (Fig. 3d-e), as already indi-
cated by the splines. For bacterial biomass and production, 
only the annual frequency is signifi cant revealing that the largely 
diff  erent amount of variability in bacteria is very similarly 
distributed across time for both stock and rate measures 
(Fig. 3f-g). Th e amplitude of this frequency is considerably 
higher in production than in biomass, confi rming the results 
of the splines. As a consequence, the amplitude of the P/B 
ratio at the annual frequency is still high and even higher 
than that of the biomass (Fig. 3h). 

 Synchrony is refl ected in the phase relationship between 
variables at each frequency. Small phase diff erences in the 
polar plots result in synchrony, however as phase differ-
ences increase, dynamics become more compensatory with 
maximum compensation at a phase difference of  π . The 
different cycles are rather synchronous for most of the 
variables and frequencies. In phytoplankton, chlorophyll 
usually lags behind biomass, and primary production 
lags behind chlorophyll (Fig. 4). The P/B ratios are in 
phase with each other but not with the measures of 
standing stocks and production. Notably for the frequen-
cies of 3- and 4-cycles per year, the ratios are positioned 
diametrically opposed to the other two standing stocks 
variables, which can be explained by the inverted clear-
water phase. In bacteria, production lags behind biomass as 
well. 
  Figure 2.     Splines (colored lines), their 95% confi dence interval (dashed colored lines), raw time series (grey lines) and harmonic models 
(black curves) of: (a) bacterial biomass (Bact biomass) (orange), (b) bacterial production (Bact production) (dark brown), and (c) the ratio 
between bacterial production and bacterial biomass (Bact P/B) (light brown). (d) Splines of Bact biomass (orange), Bact production (dark 
brown) and Bact P/B (light brown). Th e three solid vertical lines correspond in order of time to spring bloom (SpB), clear water phase 
(CWP) and summer bloom (SuB) in phytoplankton biomass. Units: bacteria biomass (mg C m –2 ) and bacteria production (mg C m –2  d –1 ). 
Note the log 2  scale on the y-axis.  
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  Figure 3.     Th e periodograms show the amount of temporal variance of the log-transformed time-series explained by each frequency. 
Th e solid black line is the periodogram of the variables indicated on the y-axis of the graph: phytoplankton biomass (Phyt biomass), 
chlorophyll concentration (Chl concentration), primary production (PPR), primary production/phytoplankton biomass (PPR/Phyt), 
primary production/chlorophyll concentration (PPR/Chl), bacteria biomass (Bact biomass), bacteria production (Bact production), 
bacterial production/bacterial biomass (Bact P/B). Th e dashed horizontal line indicates the signifi cance level of 5%. Note that in 
primary production (c), the frequency corresponding to 6-cycles per year does not surpass the signifi cance line. Due to the higher 
number of sampling dates in the phytoplankton time series, the spectral power is calculated for a higher number of frequencies 
than those of bacteria. As specifi ed in our methods section, no smoothing was applied. Frequency is shown in cycles per year to ease 
interpretation.  
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 Th e area under each signifi cant frequency indicates its con-
tribution to the total variance present in the data. Regarding 
phytoplankton, we found a striking diff erence between rate 
and stock measures for the contribution of the annual fre-
quency to the total variance: it explains 34% of the total vari-
ance in primary production, 20% in phytoplankton biomass 
and 13% in chlorophyll. In addition to the annual, signifi -
cant higher frequencies explain another 4% of the variance 
in primary production, 11% in phytoplankton biomass and 
25% in chlorophyll. Th e annuals explain 15% of the total 
variance in the ratio of primary production to phytoplank-
ton biomass and 20% in the ratio of primary production to 
chlorophyll concentration. Contrary to what we observe in 
phytoplankton, the annuals of bacterial biomass and produc-
tion explain similar amounts of the overall variance present 
in the data (25% and 30%, respectively) despite the strong 
diff erence between the annual amplitudes (Fig. 4). Th e annual 
explains 22% of the overall variance in bacterial P/B.    

 Discussion 

 Our analysis shows that diff erences are found in the vari-
ability patterns of stock and process rate measures, although 
the qualitative congruency of many of the measures is at the 
same time quite high. For both bacteria and phytoplankton, 
stocks are effi  cient for determining the timing of peaks and 
troughs present in process rate measures but they are less suit-
able for indicating the magnitude of the peaks and troughs. 
In phytoplankton, the overall variability of primary produc-
tion was strongly dominated by lower frequencies, whereas 
in stocks, and chlorophyll in particular, higher frequencies 
substantially contributed to the overall variance. Moreover, 
our analysis shows that the P/B ratios were variable. In phy-
toplankton, the P/B ratios were low during blooms and at 
their maximum when the biomass was low during the clear-
water phase. Th is buff ers the variability in food supply for 
higher trophic levels during the growing season. In contrast, 
in bacteria, the P/B ratio increased with biomass, implying 
a much higher variability in bacterial activity than expected 
from biomass measurements. 

 Th e deviations between the variability patterns of the dif-
ferent measures could be quantifi ed by the diff erent meth-
ods and they are in agreement with qualitative expectations 
derived from previous limnological research. Th e methods 
complemented each other by assessing diff erent aspects of 
the variability and pointed out some unexpected features. 
Th e CV allowed us to compare the diff erent amounts of total 
variability and it highlighted the diff erence between bacte-
rial stock and rate measures. It is important to note that the 
CV is potentially infl uenced by the lower number of mea-
surements during winter, leading us to explore other ways to 
assess the variability in our data. 
  Figure 4.     Polar plots of the amplitude (radius) and phase (angle) of 
each variable refl ect the synchrony or asynchrony at each signifi -
cant frequency. Th e phase (in radians) measures the shift of the 
origin of the cosine wave (relative to day 0, in our case 1 January), 
scaled to the frequency of the wave in question. Small phase diff er-
ences in the polar plots correspond to synchrony and as phase dif-
ferences increase, dynamics become more compensatory and 
maximum compensation is reached at a phase diff erence of  π . Th e 
radius of all circles is 1.4, corresponding to the annual amplitude 
of primary production, the highest amplitude found amongst all 
variables: phytoplankton biomass (Phyt biomass), chlorophyll 
concentration (Chl concentration), primary production (PPR), 
primary production/phytoplankton biomass (PPR/Phyt), primary 
production/chlorophyll concentration (PPR/Chl), bacteria bio-
mass (Bact biomass), bacteria production (Bact production), bac-
terial production/bacterial biomass (Bact P/B). Each circle 
represents a diff erent frequency and the length 2 π  matches the 
equivalent period.  
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 In contrast to the CV (and spectral analysis, see below), 
splines are not infl uenced by the lower number of mea-
surements in winter. Th ey equally represent all parts of the 
annual patterns for each variable demonstrating important 
intra-annual patterns. Th e general seasonal patterns of stock 
and production measures resembled each other qualitatively 
due to the similar timing of peaks and troughs, but presented 
some quantitative diff erences. For example, the spring bloom 
was more pronounced in chlorophyll concentration than in 
phytoplankton biomass whereas the opposite held for the 
summer bloom. Th e spring bloom consisted of fast grow-
ing, very productive species which are rich in chlorophyll at 
the still rather low underwater light climate, whereas slow 
growing larger K-strategists with a lower chlorophyll content 
dominate during the summer bloom (Sommer et al. 1986). 
Furthermore, the clear-water phase is less pronounced in pri-
mary production than in both measures of stocks due to the 
presence of very fast growing species and the optimal light 
availability. We obtained very interesting features for the P/B 
ratios, with higher values during the clear water phase than 
during the spring and summer bloom, characterizing self-
shading during the blooms, which may have strong impli-
cations for the relationship between standing stocks and 
process rates. 

 Spectral analysis reveals the distribution of the variance in 
the frequency domain and how much individual frequencies 
contribute to the overall variance, as well as their phase and 
amplitude information. It is important to note that not every 
frequency can be independently related to a biological pro-
cess but that it is the result of the sum of frequencies which 
can properly refl ect the general patterns present in the data. 
Th e extent to which the harmonic S( τ  i ) models refl ected the 
seasonal pattern shown by the splines depended on the num-
ber of signifi cant frequencies. Further diff erences less visible 
by the splines were revealed. Only the annual frequency, and 
a neighbor frequency very close to the annual, were signifi -
cant in primary production. Higher frequencies are mainly 
related to the biotic driven processes taking place during 
the growing season. Even though these processes are pres-
ent in primary production (as shown by the splines) spectral 
analysis did not fi nd them signifi cant. Th is shows how less 
important their magnitude is compared to the annual for 
this rate measure. Even though the annual is a clear feature 
in all variables, winter values were in general overestimated 
by spectral analysis due to less frequent measurements during 
winter. Th e absence of the 2 cycles per year frequency in phy-
toplankton biomass is another interesting feature and is due 
to compensatory dynamics within diff erent functional types. 
Individual species present the two cycles per year frequency 
but with such diff erent phases that it is no longer apparent in 
the total biomass (Vasseur and Gaedke 2007). Th is pattern 
was not observed in chlorophyll which may partly be attrib-
uted to species-specifi c diff erences in the chlorophyll content 
and changes in phytoplankton composition. 

 Th e annual frequency was still preserved in the P/B ratios 
with low winter and high summer values. In phytoplankton, 
this is due to the fact that during winter, at low light, the phy-
toplankton is not as productive as in summer. In bacteria, this 
can be explained by a highly variable fraction of active cells 
depending on the amount and quality of degradable organic 
matter and the strong temperature dependence of bacterial 
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growth (Simon and W ü nsch 1998). Furthermore, the phy-
toplankton P/B ratios were perfectly out of phase with their 
corresponding stock measures during the growing season, 
due to the already mentioned processes taking place during 
blooms and the clear water phase. Th is suggests that using 
standing stocks instead of rate measures leads to an underesti-
mation of food shortage for consumers during winter and to 
a lesser extent during blooms, and an overestimation during 
the clear-water phase. Hence, P/B ratios vary and there is no 
simple relationship between standing stocks and process rates. 
Th is is particularly important when considering that standing 
stocks and production both play a crucial yet diff erent role 
for understanding food web dynamics: the grazing pressure 
depends on the biomass of the predator whereas how much 
predator biomass may be sustained depends on prey produc-
tion rather than on biomass in the long-run. Phytoplankton 
standing stocks and production are related to diff erent kinds 
of ecosystem functions: stocks variability gives us information 
about the variability of stored carbon whereas variability in 
production addresses rates of carbon fi xation which may or 
may not be stored in the phytoplankton biomass but pass 
quickly into other components of the ecosystem. In anal-
ogy, bacterial biomass indicates the food concentration for 
bacterivores and the amount of nutrients stored in this food 
web compartment whereas bacterial production relates to the 
turn-over rate of organic matter. Hence, these measures pro-
vide diff erent information about the system. 

 Th e reasons why P/B ratios vary and the diff erences 
between them (e.g. self-shading, metabolically inert bacte-
ria, light or temperature dependent rates) are by no means 
specifi c to our system but they also apply to most other 
pelagic and terrestrial systems. Generally, variability of 
stocks will exceed that of production when a negative 
density-dependence prevails among production and bio-
mass. For example, dense stands of autotrophs lead to self-
shading which will prevent a further increase in production 
at high biomasses as will a lack of other resources in diff erent 
contexts as well. In contrast, production will be more vari-
able than stocks when the individual weight specifi c meta-
bolic rates track strongly the fl uctuations in resource supply 
(e.g. bacteria) and when biomass is bounded e.g. by density 
dependent loss rates. Both types of density dependence may 
subsequently occur within one community. For example, 
a coherent decline of production and biomass at adverse 
growth conditions in winter and a dampening of production 
at high biomasses built up under favorable growth condi-
tions were found in phytoplankton. 

 Th is underlines the importance of considering time-scale 
when relating standing stocks and process rates. Although 
primary production varied slightly less than biomass during 
the growing season, the highly variable process rates resulted 
in general in comparatively constant biomasses. Th us, the 
variability in all ecosystem functions more closely related 
to process rates (e.g. food supply, rates of carbon fi xation, 
respiration, oxygen consumption and remineralisation) are 
underestimated if biomass is used as a surrogate for process 
rates. In the context of the diversity – stability debate, the sta-
bility of ecosystem functions is used as a key indicator of the 
ecosystem ’ s performance. Investigations which look into the 
stability of ecosystems through measures of stocks disregard 
a considerable amount of variability in numerous ecosystem 



functions and this may have important implications. In gen-
eral, the mechanisms leading to the variability patterns in 
stocks and process rates are diff erent showing us that caution 
is needed when interpreting the consequences of the vari-
ability patterns in analyses which incorporate stocks with no 
information on process rates. 
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