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Summary

1. Improving the mechanistic basis of biodiversity–ecosystem function relationships requires a

better understanding of how functional traits drive the dynamics of populations. For example, envi-

ronmental disturbances or grazing may increase synchronization of functionally similar species,

whereas functionally different species may show independent dynamics, because of different

responses to the environment. Competition for resources, on the other hand, may yield a wide range

of dynamic patterns among competitors and lead functionally similar and different species to

display synchronized to compensatory dynamics. The mixed effect of these forces will influence the

temporal fluctuations of populations and, thus, the variability of aggregate community properties.

2. To search for a relationship between functional and dynamics similarity, we studied the relation-

ship between functional trait similarity and temporal dynamics similarity for 36 morphotypes of

phytoplankton using long-term high-frequencymeasurements.

3. Our results show that functionally similar morphotypes exhibit dynamics that are more

synchronized than those of functionally dissimilar ones. Functionally dissimilar morphotypes pre-

dominantly display independent temporal dynamics. This pattern is especially strong when short

time-scales are considered.

4. Negative correlations are present among both functionally similar and dissimilar phytoplankton

morphotypes, but are rarer and weaker than positive ones over all temporal scales.

5. Synthesis. We demonstrate that diversity in functional traits decreases community variability

and ecosystem-level properties by decoupling the dynamics of individual morphotypes.

Key-words: compensatory dynamics, competition, environmental forcing, functional diver-

sity, functional traits, grazing, phytoplankton, plant population and community dynamics,

synchrony, temporal dynamics

Introduction

Communities are structured in such a manner that a variety of

species can share specific ecological properties and functional

traits (Yodzis & Winemiller 1999; Cadotte, Bradley & Oakley

2008) – where a functional trait is defined as any measurable

feature of an individual affecting its fitness directly or indirectly

(Lavorel et al. 1997; Violle et al. 2007). Functional traits have

been extensively used to describe, group and rank species

according to their functions (Dı́az & Cabido 2001; McGill

et al. 2006) and, hence, their influence on ecosystem-level prop-

erties. However, the translation of functional traits into tempo-

ral dynamics remains a challenge, because of the many

functional traits possessed by a species and the complex, non-

linear ways in which these can interact with a changing envi-

ronment. A promising avenue for studying the translation

problem uses long-term data to elucidate the relationship

between species’ functional traits and their dynamics. Compre-

hending this relationship contributes to the understanding of

how species impact the variability of aggregate community

properties. If species with different functional traits exhibit

unrelated dynamics through time, the community variability

will be substantially lower than that of functionally less-diverse

communities (Tilman 1996; Hooper et al. 2005). Here, we

study the relationship between functional similarity and tem-

poral dynamics similarity of phytoplankton morphotypes in

Lake Constance, a temperate lake that follows a seasonal pro-

gression inwhich environmental forcing and competition alter-

nate between cold, more externally driven months and warm,

more internally drivenmonths (Sommer et al. 1986).

Among the drivers influencing species’ temporal dynamics,

environmental forcing and competition play amajor role (Wei-

her, Clarke &Keddy 1998). Previous theoretical and empirical

research supports the existence of a strong relationship

between species’ functional traits and their response to envi-

ronmental forcing. Species’ functional traits are robustly

related to fundamental and realized niches (McGill et al.

2006), and closely related species are known to co-occur more*Correspondence author. E-mail: marcia.rocha@gmail.com
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often than expected by chance (Dı́az, Cabido & Casanoves

1998;Webb & Peart 2000; Helmus et al. 2010), suggesting that

phylogenetically similar species co-occur in time or space

because they are more likely to possess the traits that increase

fitness (Bruggeman 2011). Alternatively, we would expect spe-

cies that are functionally very different to show independent

(uncorrelated) dynamics, because of varied responses to their

environment.

Competition, on the other hand, may be observed in phy-

toplankton communities among functionally similar and dif-

ferent species as all species compete (to a varying extent) for

the same essential resources (e.g. light and phosphorous are

essential for photosynthesis and growth), regardless of their

functional traits (Huisman et al. 1999). Competition may

therefore yield a large range of dynamical patterns among

competitors (Ricklefs 1987; Vandermeer 2004; Loreau & de

Mazancourt 2008; Gonzalez & Loreau 2009). The traditional

belief that competition should yield negative covariation

among competitors (Hutchinson 1959; MacArthur & Levins

1967) was recently challenged by Loreau & de Mazancourt

(2008), who showed that this result largely depends on the

intensity of competition. Furthermore, competition-driven

covariation can happen at different temporal scales than

environmentally driven covariation so that species may show

similar dynamics at one time-scale and different dynamics at

another (Keitt & Fisher 2006; Vasseur & Gaedke 2007).

Hence, detecting the relationship between functional and

dynamic similarity requires statistical methods adequate to

resolve patterns at different temporal scales (e.g. Micheli

et al. 1999; Vasseur, Gaedke & McCann 2005; Downing

et al. 2008).

We used long-term high-frequency measurements of phy-

toplankton, for which four functional traits reflecting the

most important growth-determining factors (e.g. maximum

growth rate, nutrient demands, susceptibility to grazing and

sedimentation) were quantified for 36 morphotypes (Weit-

hoff 2003). We determined correlations between the func-

tional trait distances and the temporal dynamics distance of

the morphotypes. This allowed us to study whether changes

in functional distance are accompanied by changes in the

similarity of temporal dynamics and, hence, whether a rela-

tionship between the functional traits of the morphotypes

and their temporal dynamics exists. Because functional traits

may impact the dynamics of populations at different tempo-

ral scales, we employ two different methods of time-series

analysis (a moving-window correlation analysis and spline

fitting) to distinguish short-term variation from general sea-

sonal patterns.

Materials and methods

DATA ACQUIS IT ION

Upper Lake Constance (Bodensee) is a large (472 km2), deep

(depth = 101 m), warm-monomictic temperate lake north of the

European Alps. It underwent re-oligotrophication (Gaedke 1998),

and mean annual phytoplankton biomass declined by a factor of 2

with phosphorous decline (Rocha et al. 2011), indicating that the

long-term changes are small compared to the very pronounced sea-

sonal dynamics (morphotypes vary in density by a factor of 10–1000

during the year). Plankton sampling was conducted weekly during

the growing season and approximately fortnightly in winter, culmi-

nating in 820 sampling dates between 1979 and 1999 (for details see

Gaedke 1998; Rocha et al. 2011). All measurements are provided per

unit area and comprise the biomass within the uppermost water layer

from 0 to 20 m depth, which roughly corresponds to the epilimnion

and the euphotic zone.We log-transformed (base 2) the biomass mea-

surements to account for their long-tailed residual distribution, given

that the seasonal variation covered approximately two orders ofmag-

nitude (Gaedke 1998). In the present study, we use a taxonomic reso-

lution of 36 morphotypes of phytoplankton comprising individual

species or higher taxonomic units that are functionally identical or

very similar under the functional classification employed here. We

treated the non-detection of a morphotype at a particular sampling

date as missing value. Morphotypes were classified based on their

functional traits as well as upon their dynamics, as described below.

FUNCTIONAL CLASSIF ICATION OF MORPHOTYPES

Selection of functional traits

For phytoplankton, net growth is the sum of intrinsic growth, sedi-

mentation, grazing losses and some other typically less important loss

factors. Building on a previous study on functional diversity in Lake

Constance, we selected four traits reflecting these three main pro-

cesses that determine the waxing and waning of individual popula-

tions, and the 36 morphotypes were classified according to volume,

shape, motility and silica use (Weithoff 2003) [nitrogen fixation

(Gaedke 1998) andmixotrophy were excluded owing to a lack of rele-

vance (Gaedke 1998; cf results)].

First, according to allometric theory, size strongly influences many

physiological activities such as maximum growth rate. For both col-

ony-forming and single-cell phytoplankton morphotypes, the classifi-

cation was performed according to individual cell size. Such a

classification optimizes the predictability of weight-specific metabolic

rates from cell size rather than the vulnerability to grazing and implies

that edible and less-edible phytoplankton morphotypes strongly

overlap in size. Secondly, the shape of a cell or colony (its surface-to-

volume ratio) is important with respect to its ability to absorb

nutrients, to its susceptibility to sedimentation and to filter-feeding

zooplankton grazing. In combination with cell volume, a suitable

measure for these processes is the longest linear dimension (LLD) of

the organism. We log-transformed (base 2) the cell volumes and the

LLD values to account for their large range (covering over 4 and 3

orders of magnitude, respectively) and to obtain a linear effect of

characters. Third, motility was considered because mobile organisms

can counteract sedimentation and migrate into favourable strata. In

addition, motility affects nutrient deficiency as the movement of cells

minimizes the hydrate envelope and, thus, the diffusive boundary

layer for nutrients around the cells. Motility was classified as follows:

0, non-motile; 0.5, buoyancy regulation (through gas vacuoles); and

1, flagellated morphotypes, which can move in three-dimensional

space (Lee 1999). Fourth, silica use was considered because it may be

a limiting nutrient in Lake Constance. The use of silica decreases the

carbon demand for cell walls and increases the specific weight, leading

to higher sedimentation rates. Silica use can be classified as follows: 1

for diatoms, which need silica for their frustules; 0.5 for Chrysophy-

ceae and Synurophyceae, which form statospores (e.g. Ochromonas),

bristles and scales (e.g. Synura orMallomonas); and 0 for all morpho-

types that do not use silica (Lee 1999).
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Distance matrix based on the traits

We have mixed variable types (continuous, ordinal and binary func-

tional traits), and we thus opted for Gower’s general similarity coeffi-

cient (Gower 1971). Gower defines a pair-wise distance value djk
between twomorphotypes, as follows:

djk ¼
1

N

XN
i¼1

abs
xij � xik

max ðxiÞ �min ðxiÞ

� �

where N is the number of functional traits considered, xij the value of

trait i for species j and xik the value of the trait i for species k. It defines

a pair-wise distance value, ranging from 0 to 1, in which 1 represents

the highest functional distance amongst our morphotypes. We

obtained a distance matrix for all pairs of morphotypes based on the

four functional traits using r 2.9.0 (RDevelopment Core Team 2009).

DYNAMICAL CLASSIF ICATION OF MORPHOTYPES

Moving-window correlation of time series

Recently, progress has been made in quantitative methods that detect

compensatory dynamics, and the importance of considering the vari-

ability at different temporal scales has been emphasized (Micheli

et al. 1999; Downing et al. 2008 and reviewed in Gonzalez & Loreau

2009). With that in mind, we employed a non-overlapping moving-

window Pearson correlation to search for the relationship between

the temporal dynamics of pairs of morphotypes. The time-window

length determines the portion of variance to be assessed. As the func-

tional traits of morphotypes may act on their dynamics at different

temporal scales, we examined time windows of 45-, 90-, 120-, 180-

and 365-days, because, as revealed by spectral analysis (Rocha et al.

2011), cycles with these lengths generally contribute the most to the

total variance present in total phytoplankton biomass and chloro-

phyll concentration.

We obtained a correlation value for each one of the non-overlap-

ping windows along the time series of the morphotypes. To collapse

this into a single measure of relatedness between the two time series,

we calculated themean of this series of correlations, hereafter referred

to as ‘ensemble average’.We included the correlations into the ensem-

ble average only for windows that comprised at least four sampling

dates in which both morphotypes were present, making sure that cor-

relations are meaningful. We included the ensemble average of a

given pair of morphotypes in the dynamics distance matrix only if at

least 25% of all possible windows met this criterion. Otherwise, we

considered the ensemble average as a missing value in the distance

matrix. These criteria inevitably cause longer timewindows to present

more pairs of morphotypes with valid ensemble averages. We have

accounted for this problem and also examined the results for only the

pairs that are valid for all windows, which are presented separately in

Fig. S1 in Supporting Information. For each time window, we

obtained a distance matrix based on the ensemble average. Distance

values may range from)1 (perfect compensatory dynamics) to 1 (per-

fectly synchronized), passing through 0, if the time series are entirely

independent. All metrics were coded using r 2.9.0.

Spline fitting

In contrast to the moving-window correlation approach, which

shows the relationship between the dynamics of morphotypes at

shorter temporal scales, smoothing spline analysis shows the relation-

ship between the recurrent seasonal patterns of morphotypes (Rocha

et al. 2011).

We calculated the splines for the data points (ti, xi), ti being

the time lapsed since 1 January of the running year. Smoothing

splines are estimated by maximizing the penalized likelihood

function (Wahba 1990). The random effects are generic and are

modelled parametrically by assuming that the covariance func-

tion depends on a parsimonious set of parameters. A general-

ized cross-validation was used for determining the smoothing

parameter, which controls the trade-off between data fit (first

term) and smoothness (second term) and is optimal when it

minimizes the expected prediction error (Craven & Wahba

1978). For this analysis, we used the package mgcvin r 2.9.0.

As an example, we show the spline fitting to the raw data of

the morphotype Synedra spp. (Fig. S2). We obtained a distance

matrix between pairs of morphotypes based on the Pearson cor-

relation of the spline estimates of the individual morphotypes

for times ti.

COMPARISON OF THE DISTANCE MATRICES OBTAINED

We compare the distance matrix based on the functional traits with

the set of six matrices based on the dynamics (five different time win-

dows plus the splines) by using a Mantel test (package vegan in r

2.9.0). This test determines the correlation between the two distance

matrices (theMantel r, ranging from)1 to 1) and estimates the signif-

icance of the relationship using a permutation test. We tested the

Mantel r observed for each comparison against the null hypothesis of

r = 0 using 10 000 permutations. The square of the Mantel r quanti-

fies the amount of shared variance between the two distance matrices,

and it neither assumes nor provides any information about the distri-

bution of observations around the trend.

INVESTIGATION OF RELATIVE TRAIT- IMPORTANCE

In the standard analysis, equal weight was given to each trait when

computing the functional trait matrix based on the Gower distance.

In addition, we performed an a posteriori test to determine which

traits have the greatest ability to explain the similarities in population

dynamics. Because our data generally indicated a negative correlation

between functional trait similarity and temporal dynamics similarity,

we attributed to each trait a weight and searched for the set of weights

resulting in the most negativeMantel r (following the routine of Byrd

et al. 1995). We assume that traits that obtain weights different from

0 for the majority of dynamics measures are important for generating

dynamic patterns (Table 1). This analysis was performed using r

2.9.0.

Table 1. Minimization of mantel r and weights of traits yielding the

strongest negative correlation

Traits

Mantel rCell volume LLD Silica use Motility

Window correlation (days)

45 0.3 0.31 0.32 0.07 )0.49**
90 0.3 0.39 0.26 0.05 )0.28**
120 0.45 0.26 0.18 0.11 )0.29**
180 0.38 0.36 0.21 0.05 )0.29**
365 0.31 0.41 0.22 0.06 )0.27**

Splines 0.25 0.67 0.07 0 )0.24*

LLD, longest linear dimension. *P < 0.05, **P < 0.01.
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Results

Functionally similar morphotypes presented more similar

dynamics than functionally different morphotypes. The dis-

tance matrix based on functional traits was negatively corre-

lated with the distance matrices based on the moving-window

correlations (Mantel r of )0.46, )0.24, )0.23, )0.24, )0.2, for
45, 90, 120, 180 and 365-day windows, respectively, all with

P < 0.001), showing that the distance matrices share between

4% and 21% of their variance (Fig. 1a–e). In addition to the

significant Mantel r’s, we observe a trend in the graphs show-

ing that the negative relationship is generated by positive

ensemble averages when morphotypes are similar, decaying to

ensemble averages close to 0 when morphotypes are different.

The ensemble averages among individual pairs of morpho-

types were mainly positive and only occasionally weakly nega-

tive. TheMantel rwas influenced by the time-scale considered,

and longer windows led to a weaker correlation and a smaller

portion of shared variance between the morphotypes’ distance

in traits and their distance in dynamics.

As longer time windows comprise more sampling dates, a

larger number of morphotype pairs contribute to the Mantel

test, which may lead to differences based only on morphotype

composition. To control for this, we performed all tests using

matrices comprising all data and matrices comprising only

the morphotype pairs present at all window lengths.

Although the results (e.g. Mantel r tends to decrease with

increasing window lengths) do not qualitatively change when

fewer morphotype pairs contribute, the pattern between the

functional traits and dynamics of the morphotypes is

strengthened by the exclusion of the less-frequent morpho-

types (the distance matrix based on traits shares 11–21% of

its variance with the distance matrices based on temporal

dynamics when focusing on the most frequently abundant

pairs of morphotype). We not only incorporated all available

morphotype pairs in the main results, but included results

from the more restrictive inclusion rules in Fig. S1.

Splines depict a very smooth average annual pattern for the

individual morphotypes in contrast to the biomass dynamics

on which the moving-window correlations are based (Fig. S2).
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Fig. 1. Plots of functional trait distance vs. temporal dynamics distance at different temporal scales. Functional trait distances aremeasured for pairs

of morphotypes using the Gower distance, and temporal dynamic distance is based on a moving-window correlation of window length (a) 45 days,

(b) 90 days, (c) 120 days, (d) 180 days and (e) 365 days. The values ofMantel r are shown in the box within the plot area, and ***meansP < 0.001.
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For this reason, splines of pairs ofmorphotypes exhibit consid-

erably higher absolute correlations ranging from near )1 to

near 1 (Fig. 2). The distance matrix based on the splines is not

significantly correlated with that based on the functional traits,

and the values of the correlation coefficients do not decline

with increasing functional distance. This suggests that different

functional characteristics may result in similar overall annual

dynamics and vice versa.

We performed an a posteriori test of the importance of

individual traits for the relationship between functional trait

similarity and temporal dynamics similarity. A null weight

was attributed to mixotrophy in all cases, which led to the

exclusion of this trait initially considered in the analysis.

Hence, all analyses were performed using only the set of the

four traits presented in our ‘Materials and methods’ section.

Independently of the measure of dynamics distance, the high-

est weight was in all cases attributed to one of the two traits:

either cell volume or LLD (Table 1). When summed, these

two traits received a weight of at least 0.6. Aside from mixo-

trophy, the lowest weights were consistently attributed to the

functional trait motility.

Discussion

WINDOW CORRELATION VS. SMOOTHING SPLINE

ANALYSIS

Our results show that morphotypes with high functional trait

similarity present dynamics that are more similar than those

of dissimilar morphotypes. This relationship weakens as the

time-scale over which correlations are determined increases

(Fig. 1a–e and Fig. S1). Accordingly, the functional traits had

no impact on the mean annual pattern of the dynamics of the

morphotypes (depicted by the spline correlations, Fig. 2).

These findings suggest that morphotype functional traits are

more strongly driving the responses to short-term changes,

such as those caused by light and nutrient availability, vertical

mixing intensity, sedimentation and grazing pressure, which

greatly influence phytoplankton dynamics in Lake Constance

(Gaedke 1998; Huber & Gaedke 2006). The lack of a relation-

ship at the annual scale suggests that some recurrent abiotic

forces (e.g. annual deterioration of the underwater light cli-

mate, deep mixing) and biotic forces (e.g. intensive grazing

during the clear water phase) affect all morphotypes in a simi-

lar manner, regardless of the functional traits we included

here. At this scale and disturbance level, the potential for

functional traits to drive differential responses is low, suggest-

ing that considering the total variability in the temporal

dynamics (and not only the average annual pattern) is funda-

mental to uncovering relationships between species’ func-

tional traits and the environment. Moreover, it indicates that

the relationship between trait similarity and dynamics similar-

ity is not constant throughout the year.

IMPORTANCE OF FUNCTIONAL TRAITS

Despite a significant correlation, the percentages of shared

variance between the distance matrix based on traits and dis-

tance matrices based on temporal dynamics are rather low,

which may arise for two reasons. First, a multitude of func-

tional traits may drive dynamics at a variety of different tem-

poral scales, making the functional classification of

morphotypes challenging. We used the functional traits that

were considered most relevant for our morphotypes (Weit-

hoff 2003); however, these are obviously an incomplete subset

of the set of traits actually impacting dynamics. Given this

limitation, our results are conservative and reassuring of an

existent relationship. Secondly, morphotypes that occur less

frequently in the community contribute less to the pattern

than more frequent ones (Fig. 1 and Fig. S1), which can be

due to the fact that fewer values are taken into account in the

ensemble average, decreasing its reliability.

Our investigation of the importance of individual traits for

determining morphotype dynamics showed that all traits but

mixotrophy contributed to the relationship between functional

and dynamics similarity, leading to the exclusion of this trait in

the final analysis. This may be due to the fact that mixotrophy

is only relevant during a short time during the year and

increased during the long-term period of re-oligotrophication

(1979–2000) (Kamjunke, Henrichs & Gaedke 2007) and that

our methodology, which averages within the year and across

all years, is not suitable for grasping these changes. Motility is

consistently attributed a low weight, showing a weak effect on

the dynamics. This functional trait is direct or indirectly associ-

ated with several factors that may have a temporally variable

impact on dynamics (e.g. nutrient deficiency, sedimentation,

probability of predator encounter). Cell size and shape were

the most important traits, when summed, for all measures of

temporal dynamics. This is in line with numerous other studies

showing that size is the single most informative attribute of the

morphotypes (Reiss 1991; Litchman et al. 2010; cf. Materials

and methods). Interestingly, the relationship between func-

tional similarity calculated for individual functional traits and

dynamics similarity was not significant for any of the four

traits considered here, showing that the combined effect of

these functional traits is decisive for predicting dynamics simi-

larity (results not shown).
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FUNCTIONAL DISTANCE AND THE RATE OF

COMPETIT IVE EXCLUSION

Species with similar functions are expected to have similar

competitive abilities, slowing the rate at which competitive

replacement may occur (Agren & Fagerstrom 1984). Alterna-

tively, this process should be faster among functionally more

different species. This alone could lead to a negative Mantel

r, as negative covariances among functionally similar species

would only be observed over long time-scales but could be

present among functionally different species on the short-

term patterns studied here. We accounted for this by aggre-

gating very similar species into one morphotype and found

no indication of differential speed of competitive replacement

among morphotypes, as negative correlations were present

equally among functionally similar and different morpho-

types. This confirmed that the degree of synchrony encoun-

tered among functionally similar morphotypes is conferred

by functional trait similarity and is a real feature of the

dynamics. It has important consequences at this time-scale

for ecosystem-level processes regardless of our ability to

detect slow competitive replacement.

COMPARISON WITH PREVIOUS WORKS

Temporal dynamics of morphotypes are mainly positively

correlated, but negative correlations also occur, especially

over long time-scales. This is in agreement with previous

studies, which revealed that synchronous dynamics domi-

nated within the phytoplankton community in Lake Con-

stance and that at certain instances some compensatory

dynamics were present; notably, negative correlations were

found among cryptomonads and non-cryptomonads during

extended spring blooms (Tirok & Gaedke 2007), and dur-

ing the growing season when grouping the entire phyto-

plankton into edible and less-edible and eliminating

(Vasseur, Gaedke & McCann 2005; Vasseur & Gaedke

2007) or reducing (Huber & Gaedke 2006) the impact of

the annual cycle. In accordance with Huber & Gaedke

(2006) who showed that grazing represents an important

environmental driver in our system, which desynchronizes

pairs of edible and less-edible phytoplankton during the

growing season, we also found negative correlations among

these pairs for the most frequently encountered morpho-

types. These negative correlations spread along the whole

gradient of the functional distance employed here, which is

because of the fact that our functional classification of

morphotypes not only is restricted to grazing susceptibility

but also considers nutrient demands, motility and suscepti-

bility to sedimentation. In contrast to previous studies, we

opted to consider the total variance present in the mor-

photype time series, which made our approach unbiased

but led to a weakening of negative correlations previously

identified for Lake Constance phytoplankton. Considering

only portions of the variance and the effects of seasonality

on this relationship represents a promising area for future

research.

The prevalence of synchronized dynamics among individual

morphotype pairs relative to compensatory dynamics in our

results concord with the study by Houlahan et al. (2007),

which showed that synchronous dynamics are far more com-

mon in communities of competing species. We cannot, how-

ever, reject that compensatory dynamics exist in our

community, as we use species’ absolute abundances, which are

expected to covary with fluctuations in community size even if

competitive interactions are present (Loreau & deMazancourt

2008). In Lake Constance, this is highly relevant as the com-

munity biomass varies by approximately two orders of magni-

tude (Rocha et al. 2011). Moreover, our results are in

agreement with previous studies, which show that closely

related species are likely to occur in similar habitats because of

environmental filtering (Dı́az, Cabido & Casanoves 1998;

Webb & Peart 2000; Helmus et al. 2010). These studies used

phylogenetic relatedness as a proxy for trait information, when

predicting community and species responses to their environ-

ment, assuming that closely related species exhibit similar

responses to the environment. Phytoplankton traits are to

some extent evolutionarily conserved, but deviations and

exceptions exist (Bruggeman 2011), and there can be a large

discrepancy between phylogenetic relatedness and the expres-

sion of phenotypic traits. By combining highly resolved tempo-

ral dynamics with species traits rather than phylogeny, our

study enriches our understanding of the mechanisms directly

determining species’ temporal dynamics.

Conclusions

For the phytoplankton community in Lake Constance, we

show that differences in morphology, behaviour, physiology

and susceptibility to grazing imply differences in temporal

dynamics. With increasing functional differentiation, dynam-

ics move from more synchronized to independent, suggesting

that a more diverse set of traits will reduce variability of

community-level properties such as biomass production,

respiration or remineralization. Moreover, our data suggest

that the functional relationships among species can be used to

assess the impact of the loss of functional diversity. We show

that a loss of functional diversity would lead to increased vari-

ability at the community level. Understanding how functional

differences drive differences in dynamics in this and other sys-

tems will ultimately lead to better predictions for the conse-

quences of anthropogenic changes.
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Figure S2. Spline (black line) and raw time series (grey dots) of Syne-

dra spp. morphotype.
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