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abstract: Resource competition is thought to drive divergence in
resource use traits (character displacement) by generating selection
favoring individuals able to use resources unavailable to others. How-
ever, this picture assumes nutritionally substitutable resources (e.g.,
different prey species). When species compete for nutritionally es-
sential resources (e.g., different nutrients), theory predicts that se-
lection drives character convergence. We used models of two species
competing for two essential resources to address several issues not
considered by existing theory. The models incorporated either slow
evolutionary change in resource use traits or fast physiological or
behavioral change. We report four major results. First, competition
always generates character convergence, but differences in resource
requirements prevent competitors from evolving identical resource
use traits. Second, character convergence promotes coexistence.
Competing species always attain resource use traits that allow co-
existence, and adaptive trait change stabilizes the ecological equilib-
rium. In contrast, adaptation in allopatry never preadapts species to
coexist in sympatry. Third, feedbacks between ecological dynamics
and trait dynamics lead to surprising dynamical trajectories such as
transient divergence in resource use traits followed by subsequent
convergence. Fourth, under sufficiently slow trait change, ecological
dynamics often drive one of the competitors to near extinction, which
would prevent realization of long-term character convergence in
practice.
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Resource competition is common in nature (Schoener
1983; Gurevitch et al. 1992; Harpole and Tilman 2006;
Kaplan and Denno 2007). The main evolutionary conse-
quence of resource competition is thought to be character
displacement, evolutionary divergence of competing spe-
cies in resource use traits (reviewed in Schluter 2000; called
“divergent character displacement” in Grant 1972). Re-
source competition generates divergence via frequency-
dependent selection. Individuals with common resource
use traits will compete intensely with many similar indi-
viduals and so have low fitness, while individuals with rare
resource use traits will have access to underused resources
and so have high fitness (Slatkin 1980; Taper and Case
1992). Many putative examples of character displacement
are known, and the overall weight of evidence suggests
that resource competition is an important driver of evo-
lutionary diversification and adaptive radiation (Schluter
2000).

However, character displacement is not the only possible
evolutionary outcome of resource competition. Abrams
(1987a) pointed out that the expectation of character dis-
placement depends crucially on the assumption of com-
petition for nutritionally substitutable resources. Substi-
tutable resources (e.g., different prey species) are those for
which increased intake of one resource can always com-
pensate for decreased intake of another (León and Tump-
son 1975). Nutritional substitutability allows selection to
favor traits that increase the ability to consume resources
for which competition is weak but reduce the ability to
consume resources for which competition is strong. Most
putative examples of character displacement are thought
to involve competition for substitutable resources (Schlu-
ter 2000). However, many species, particularly plants, al-
gae, and microbes, often compete for nonsubstitutable
(essential) resources such as nitrogen and phosphorus (Til-
man 1982; Grover 1997; Harpole and Tilman 2007). Com-
petition for essential resources selects for character con-
vergence, not displacement (Abrams 1987a). When
resources are essential, fitness depends on the consump-
tion rate of the resource that is consumed at the lowest
rate relative to the individual’s nutritional requirements
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(León and Tumpson 1975; Grover 1997). Adaptive evo-
lution therefore should alter species’ traits so that essential
resources are consumed in an optimal ratio matching nu-
tritional requirements, leading to colimitation of fitness
by all resources (Tilman 1982; Bloom et al. 1985; Abrams
1987a). Selection for colimitation leads to character con-
vergence (Abrams 1987a).

For instance, consider a consumer species feeding on
two essential resources and the evolutionary effect of the
arrival of a second consumer species that is a superior
competitor for resource 1. The arrival of the second con-
sumer species will reduce the availability of resource 1 in
the environment, generating selection on the first con-
sumer species to increase its ability to acquire resource 1
and thereby restore its optimal ratio of resource con-
sumption rates (Abrams 1987a). This represents conver-
gence in resource use traits—the first consumer evolves
to become a better competitor for resource 1, making the
first consumer more similar in resource use to the second
consumer. Abrams (1987a) supported this verbal argu-
ment by analyzing a simple model of a single consumer
of two essential resources and demonstrating that per cap-
ita consumption rates producing colimitation are a CSS
(an evolutionarily stable strategy [ESS] that is also an evo-
lutionary attractor). Changes in the CSS per capita con-
sumption rates in response to changes in resource avail-
ability imply character convergence when changes in
resource availability are assumed to arise from resource
consumption by a (nonevolving) competitor.

The pioneering work of Abrams (1987a) identifies the
qualitative evolutionary effect of competition for essential
resources but leaves important quantitative questions un-
addressed. How similar will species become in their re-
source use traits? How does their evolved degree of sim-
ilarity depend on their resource requirements and other
factors? Can long-term convergence be preceded by tran-
sient periods of divergence? Abrams (1987a) also did not
address the interplay of ecological and evolutionary dy-
namics. Ecological and evolutionary dynamics clearly are
not independent here: ecological dynamics (resource con-
sumption) determine individual fitnesses, while the sub-
sequent trait evolution feeds back to alter the ecological
dynamics by altering the frequency of individuals with
different resource use traits. What are the reciprocal effects
of ecological and evolutionary dynamics under competi-
tion for essential resources? For instance, can adaptive
evolution prevent ecological extinction?

Evolutionary character displacement also has analogues
on shorter timescales, and character convergence should
as well. Many species can adaptively alter their resource
use by shifting their behavior, morphology, or physiology
(“niche shifts”; Giese 1973; Rhee 1978; Gotham and Rhee
1981; Pacala and Roughgarden 1984; Pfennig and Murphy

2000; Finzi et al. 2007). In general, the optimal resource
use traits for a given species should be independent of
whether the underlying mechanism of trait change is ge-
netic evolution or phenotypic plasticity, as long as the traits
are subject to the same trade-offs in either case (Abrams
1986, 1987a, 1987b). However, genetic evolution and phe-
notypic plasticity operate on different timescales and so
should have different temporal dynamics.

Here we analyze models of adaptive trait change under
competition for essential resources. Each model considers
two consumers competing for two essential resources, in
which both consumers’ per capita resource consumption
rates can change adaptively. The model can be interpreted
as an approximation to standard quantitative genetics
models describing slow trait change via genetic evolution
(Iwasa et al. 1991; Taper and Case 1992; Abrams et al.
1993) or as a model of rapid trait change via behavioral
shifts (Taylor and Day 1997) or rapid genetic evolution.
We explore a wide range of relative rates of trait dynamics
and ecological dynamics in order to fully understand
model behavior. We do not assume any particular answer
to the empirical question of how rapid genetic evolution
typically is relative to rates of change in population abun-
dances (reviewed in Hairston et al. 2005). We consider
alternative models of trait change in appendix A in the
online edition of the American Naturalist.

The Model

In all of the models, ecological dynamics are described by
equations used in previous theoretical work on resource
competition (León and Tumpson 1975), with minor mod-
ifications:

N gdR j ji p D(S � R ) � , (1a)�i idt yj ij

dNj
p N (g � d ), (1b)j j jdt

where

g p min [y u R , y (1 � u )R ]. (2)j 1j j 1 2j j 2

Essential resource i ( ) has abundance Ri and isi p 1, 2
supplied in chemostat fashion at flow rate D and inflow
concentration Si. Resources wash out of the system at rate
D. Consumer j ( ) has abundance Nj and experi-j p 1, 2
ences density-independent losses at per capita rate dj. Con-
sumer j grazes on resource i with functional response gj,
parameterized by the per capita resource uptake rates uj

on resource 1 and on resource 2. We assume that1 � uj

consumer j has fixed resource requirements (stoichiom-
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etry): the yield coefficient yij gives the units of consumer
j produced from a unit of resource i.

The minimum function in the functional response (eq.
[2]) arises in the consumer growth rate (eq. [1b]) because
resources are nutritionally essential, and so consumer
growth is limited by the resource that the consumer ac-
quires at the lowest rate relative to its requirements. The
minimum function in equation (2) also appears in the
resource growth rate (eq. [1a]) because we assume that
consumer j maintains fixed stoichiometry by consuming
the nonlimiting resource at a rate just sufficient to meet
its requirements, given its current consumption rate of the
limiting resource (León and Tumpson 1975). Our results
remain qualitatively unchanged if we instead assume that
consumers eat what is available (i.e., the sum in eq. [1a]
is replaced by for and by� N u R i p 1 � N (1 � u )Rj j 1 j j 2j j

for ) and maintain fixed stoichiometry by excretingi p 2
excess nonlimiting resource in an unavailable form (results
not shown).

We assume constant per capita uptake rates uj and
for the sake of simplicity. Our assumption that con-1 � uj

sumer j takes up resource 2 at per capita rate en-1 � uj

forces a linear trade-off between per capita uptake rates
of the two resources. A linear trade-off is the simplest
assumption and may be realistic in at least some cases
(e.g., in microbes in which the total number of resource
uptake proteins may be limited by cell surface area; Aksnes
and Egge 1991). Empirical information on trade-off shape
is lacking, so we lack an empirical motivation for choosing
a particular nonlinear trade-off from the universe of pos-
sibilities, and a systematic exploration of various nonlinear
trade-offs is beyond the scope of this work. Assigning both
consumers the same total per capita uptake rate of 1 en-
sures that neither consumer is intrinsically superior to the
other at resource acquisition.

Without loss of generality, we assume that y , y ! 111 22

and , so that consumer j has a lower yieldy p y p 121 12

from resource than resource . Under this as-i p j i ( j
sumption, the parameters y11 and y22 give the ratio of re-
source requirements for consumers 1 and 2, respectively.
Our assumptions on the yij values also imply interspecific
differences in resource requirement ratios, a necessary con-
dition for ecological coexistence (León and Tumpson 1975;
Tilman 1982).

Per capita resource uptake rates can change adaptively
via either genetic evolution or phenotypic plasticity. We
model trait change as

du �(1/N )(dN /dt)j j j
p v , (3)jdt �uj

where rate parameter scales the rate of evolution ofvj

consumer j. The biological interpretation of depends onvj

the model derivation. The quantity is[�(1/N )(dN /dt)]/�uj j j

the slope of the fitness gradient, the partial derivative of
the fitness (per capita growth rate) of consumer j with
respect to uj.

There are two ways to derive equation (3) as a model
of genetic evolution. First, it can be derived as an ap-
proximation to a quantitative genetics model (Iwasa et al.
1991; Taper and Case 1992; Abrams et al. 1993). Quan-
titative genetics assumes that the trait value of an indi-
vidual is determined by many loci with small, additive
effects, along with a normally distributed environmental
deviation, leading to a population phenotypic distribution
that is approximately normal on an appropriate measure-
ment scale (Lande 1976, 1982; Taper and Case 1992). Ge-
netic and phenotypic variances are assumed constant
(Lande 1982; Taper and Case 1992). Population size is
assumed to be sufficiently large that genetic drift can be
neglected (Lande 1976). To approximate the underlying
quantitative genetics model using equation (3), it is further
assumed that the phenotypic variance is small or that the
variance is large but that the third- and higher-order de-
rivatives of the fitness function are small (Iwasa et al. 1991;
Taper and Case 1992; Abrams et al. 1993). The approxi-
mation works best when selection is relatively weak (Lande
1982; Iwasa et al. 1991; Taper and Case 1992; Abrams et
al. 1993; Abrams 2005). When equation (3) is interpreted
as an approximation to quantitative genetics, is inter-vj

preted as the additive genetic variance.
Second, equation (3) can be derived as a deterministic

approximation to a stochastic model describing the evo-
lution of a nearly monomorphic asexual lineage in which
adaptation occurs via rapid fixation of rare mutations of
small effect and the ecological dynamics go to equilibrium
between mutation events (Dieckmann and Law 1996). De-
rived in this fashion, equation (3) has been termed a model
of adaptive dynamics (Dieckmann and Law 1996; Abrams
2005). If equation (3) is interpreted as a model of adaptive
dynamics in this sense, is proportional to the productvj

of the variance of the mutation distribution and the rate
of mutation per birth. Note that equation (3) is an ap-
proximation to the evolutionary dynamics of a single pop-
ulation evolving via quantitative genetics but is an ap-
proximation to the average evolutionary dynamics of
many independent asexual populations evolving via sto-
chastic mutation-limited evolution (Taper and Case 1992;
Dieckmann and Law 1996). Derivation of equation (3) as
an approximation to a stochastic model of mutation-
limited evolution requires the assumption of a separation
of timescales between evolutionary dynamics (slow) and
ecological dynamics (fast; Dieckmann and Law 1996). De-
riving equation (3) as an approximation to quantitative
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genetics does not require assumption of a separation of
timescales (Taper and Case 1992).

Quantitative genetics is the most generally applicable
motivation for equation (3) (Abrams 2005), and we con-
sider equation (3) as an approximation to quantitative
genetics when interpreting our model as an evolutionary
model. However, the fact that equation (3) can be derived
via multiple arguments suggests that it provides a robust
description of genetic evolution applicable in a wide range
of contexts. For instance, mutation-limited asexual evo-
lution is an empirically reasonable description of many
experimental microbial systems (Elena et al. 1996; de Vis-
ser et al. 1999; de Visser and Rozen 2005), while quan-
titative genetics provides a more realistic basis for equation
(3) in macroscopic organisms (Lande 1976, 1982).

Of course, the realism of both evolutionary derivations
of equation (3) can be questioned on the grounds that
adaptive evolution may depend on mutations of large ef-
fect (Barton and Polechová 2005). However, currently
available empirical information is not sufficient to develop
a more realistic evolutionary model that retains generality
and tractability. There is a need for models of adaptive
evolution that, while possibly unrealistic, are simple
enough to be incorporated into general ecological models
of interspecific interactions (Abrams 2005). We are not
modeling speciation (an issue for which consideration of
genetic details is arguably unavoidable), and so sacrificing
genetic realism for the sake of general insight is appropriate
here.

Equation (3) also can be interpreted as a model of rapid
trait change via phenotypic plasticity (Taylor and Day
1997). The derivation assumes that an individual of con-
sumer species j with phenotype uj has a small probability
of changing its phenotype so as to increase its fitness and
that this probability is proportional to the fitness gradient
at uj (Taylor and Day 1997). If it is further assumed that
the variance in uj is constant, the rate of change in the
mean of uj is given by equation (3), where is the variancevj

in uj. This derivation does not assume that uj is normally
distributed.

Equation (3) is difficult to use in numerical integration
because the partial derivative is discontinuous:

�(1/N )(dN /dt)j j p
�uj

y R , y R (1 � u ) 1 y R u R limiting1j 1 2j 2 j 1j 1 j 1

�y R , y R (1 � u ) ! y R u R limiting . (4)2j 2 2j 2 j 1j 1 j 2{0, y R (1 � u ) p y R u colimiting2j 2 j 1j 1 j

We therefore approximate the discontinuous step function
in equation (4) using a sigmoid function, thereby obtain-
ing a continuous approximation to equation (3):

duj
p v [f(x , h)(y R � y R ) � y R ], (5)j 1j 1 2j 2 2j 2jdt

where

�1 �1f(x , h) p 0.5 � p tan (hx ), (6a)j j

x p y R (1 � u ) � y R u , (6b)j 2j 2 j 1j 1 j

h p 10,000. (6c)

The sigmoid function becomes increasingly steepf(x , h)j

and steplike as the shape parameter h increases, taking on
a value of ∼1 when R1 is limiting (i.e., ) and ∼0 whenx 1 0j

R2 is limiting (i.e., ). We arbitrarily assumex ! 0 h pj

; our results do not change for larger values of h,10,000
and other choices of sigmoid function would give similar
results.

Our model is not a quantitatively realistic description
of any particular system, but empirical evidence supports
many of the underlying assumptions and approximations.
Many empirical studies support the assumption of a
species-specific optimal ratio in which essential resources
must be consumed so as to maximize fitness (Rhee and
Gotham 1980; Boersma and Elser 2006; Elser et al. 2006;
Behmer and Joern 2008; Lee et al. 2008). Goddard and
Bradford (2003) evolved yeast under C or N limitation in
chemostats and found that resource requirements are evo-
lutionarily inflexible, at least over a few hundred gener-
ations. Comparative studies indicate that resource require-
ments can evolve over macroevolutionary timescales
(Quigg et al. 2003; Strzepek and Harrison 2004), but even
long-term macroevolution must have limits. No species
can evolve to do without essential resources such as ni-
trogen, phosphorus, or carbon. And while many organisms
have flexible body composition (stoichiometry) that can
be adjusted physiologically, this flexibility also has limits
and can be captured with models that assume inflexible
minimum resource requirements (Klausmeier et al. 2004).
The work of Goddard and Bradford (2003) also supports
the assumption of an evolutionary trade-off between per
capita uptake rates of different resources, although the
mechanistic basis of the trade-off is unknown for most
species. Results of many studies of plasticity in resource
use also are consistent with our assumptions. For instance,
Finzi et al. (2007) found that forest trees respond to ex-
perimentally increased availability of one essential resource
(CO2) by increasing their uptake of another essential re-
source (N) but that nitrogen use efficiency (yield) is in-
flexible. Finally, in the absence of trait change, equations
(1) and (2) or similar equations can qualitatively and
quantitatively predict the outcome of chemostat experi-
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Figure 1: Phase plane for resource uptake rates of consumers 1 (u1) and 2 (u2) for a hypothetical illustrative parameter set. Lines divide the plane
into regions with different long-term ecological outcomes; black regions are those for which both consumers are washed out. Solid lines indicate
u1, u2 combinations that give the two consumers equal R∗ values for resources 1 and 2. The intersection of the straight lines defines the sympatric
optimum, the trait values toward which adaptation tends to drive the consumers when they are growing together. Also shown are the allopatric
optima, the trait values to which adaptation drives the consumers when they are growing alone. Parameter values are ,S p S p y p y p 11 2 12 21

, and .y p y p 0.5 D p d p d p 0.111 22 1 2

ments in which algae or bacteria compete for two essential
resources (Grover 1997).

Results and Discussion

Equilibrium Results

The model reaches equilibrium when consumer abun-
dances, resource levels, and trait values are all unchanging.
It is possible to solve analytically for the values of uj at
equilibrium, both for a single consumer species growing
alone in allopatry and for the two consumers growing
together in sympatry (app. B in the online edition of the
American Naturalist). In both the one- and two-species
cases, the equilibrium is unique, given our assumptions
about species’ resource requirements (app. B). The equi-
librium for a single species growing in allopatry is globally
stable (app. B; Abrams 1987a). The stability of the equi-
librium for two species growing in sympatry depends on

whether there is a strict separation of timescales between
trait dynamics and ecological dynamics.

It is also possible to solve analytically for the values of
uj that would, in the absence of trait change, lead to any
given ecological outcome (coexistence, competitive exclu-
sion of one species by the other independent of initial
abundances, exclusion of one species or the other de-
pending on initial abundances, washout of both species;
fig. 1; app. B). Knowledge of the ecological dynamics that
would occur for any given fixed values of uj aids inter-
pretation of feedbacks between ecological dynamics and
trait dynamics.

Our analytical results reveal that competition for essen-
tial resources selects for character convergence: the optimal
uptake rates of the two consumers are always more similar
in sympatry than in allopatry (app. B; fig. 1). This result
confirms and extends the argument of Abrams (1987a),
who considered a single consumer evolving in response to
competition from a nonevolving competitor. To under-
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Figure 2: A, Three zero net growth isoclines (ZNGIs; dashed lines) for consumer 1 shown in the resource phase plane; each ZNGI corresponds to
a different value of the uptake rate u1. Under adaptive trait change, the corners of these ZNGIs form a curved line, which represents the adaptive
ZNGI for consumer 1. B, When the adaptive ZNGIs for consumers 1 and 2 are plotted together, their intersection determines the sympatric optimum.

stand character convergence, it is useful to consider the
zero net growth isoclines (ZNGIs) of the two consumers
and how these isoclines vary as a function of trait values.
The ZNGI for consumer j defines the break-even levels of
resources R1 and R2, at which consumer per capita growth
rate is 0. The ZNGI for consumer j is a right-angle curve
because the resources are nutritionally essential (fig. 2A;
León and Tumpson 1975). The break-even level of R1 for
consumer j is a decreasing function of uj, while the break-
even level of R2 for consumer j is a decreasing function
of . The value of uj therefore defines the position of1 � uj

the corner of consumer j’s ZNGI along a continuous, neg-
atively sloped trade-off curve (fig. 2A). In the long term,

a single consumer growing alone in allopatry attains an
optimal value of uj (denoted uj(A)) that causes it to be
colimited by both resources (app. B; Tilman 1982; Abrams
1987a; Klausmeier et al. 2007). The trade-off curve is spe-
cies specific; different consumers have different resource
requirements and so attain different uj(A) when growing in
allopatry (fig. 2B). However, the optimal uj values in sym-
patry (uj(S)) will always be more similar than the optimal
uj values in allopatry. To see why, consider a case in which
two consumers that have evolved optimal traits in allopatry
come into secondary contact (fig. 2B). The equilibrium
resource levels will be defined by the point at which the
two consumers’ ZNGIs cross, given the consumers’ current
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allopatrically adapted trait values (fig. 2B). Consumer 2
reduces R2 below the level to which consumer 1 is pre-
adapted. In response, consumer 1 can increase its fitness
by increasing its uptake rate of R2, shifting its ZNGI down
and to the right along its trade-off curve. Conversely, con-
sumer 1 reduces R1 below the level to which consumer 2
is preadapted, so consumer 2 can increase its fitness by
increasing its uptake rate of R1, thereby shifting its ZNGI
up and to the left. Both consumers’ ZNGIs will continue
shifting in this fashion as long as the intersection of their
ZNGIs remains above and to the right of the point where
the trade-off curves cross (fig. 2B). Eventually, both ZNGI
corners shift to the point where the two trade-off curves
cross. At this point, the two consumers’ ZNGIs coincide,
and both consumers are colimited (app. B; fig. 2B). The
per capita uptake rates that produce coincident ZNGIs in
sympatry therefore represent an optimum because neither
consumer can increase its fitness by shifting its per capita
uptake rates (app. B).

However, the two consumers do not have identical op-
timal per capita uptake rates in sympatry because they
differ in resource requirements (app. B). In order for co-
existing consumers with different resource requirements
to both be colimited, they must have different per capita
resource uptake rates (León and Tumpson 1975).

The optimal uj values in sympatry always lie on the
boundary of the set of values that would permit stable
ecological coexistence in the absence of trait change (app.
B; fig. 1). This is because consumers evolve resource use
traits that cause them to become colimited. The interior
of the space of uj values permitting ecological coexistence
comprises those combinations of uj values that cause each
consumer to be limited by a different resource (León and
Tumpson 1975; Tilman 1982; Grover 1997). The boundary
of the space of uj values permitting ecological coexistence
necessarily is defined by those combinations of uj values
that cause at least one consumer to be colimited by both
resources, with a unique combination of uj values at which
both consumers are colimited. The optimal resource use
traits of competing consumers will fall on the edge of
coexistence in any model of competition for essential re-
sources in which consumers are strictly resource limited,
colimitation maximizes fitness, and other traits take on
fixed values.

The above adaptive argument explains why the optimal
consumer traits are always more similar (but nonidentical)
at the sympatric optimum than at the allopatric optimum.
However, it does not address the stability of the sympatric
optimum and so does not address whether the sympatric
optimum would actually be attained in practice. Next we
address stability of the sympatric optimum.

Model Dynamics under a Strict Separation of Timescales

The stability of the sympatric equilibrium depends on the
rate of trait change relative to the rate of ecological dy-
namics. In the limiting case of a strict separation of time-
scales, so that ecological dynamics always go to equilibrium
before any trait change can occur, the system never attains
the sympatric optimum unless the initial trait values are
within the region of u1, u2 space permitting stable eco-
logical coexistence in the absence of trait change. If the
initial trait values are outside this region, competitive ex-
clusion will occur before any trait change can occur, and
the system will subsequently evolve to the allopatric op-
timum of the winning species. Further, even if the initial
trait values, species abundances, and resource levels place
the system in ecological equilibrium at the sympatric op-
timum, the ecological equilibrium will be neutrally stable
under a strict separation of timescales. This is because the
sympatric optimum falls on the boundary of the set of uj

values permitting stable ecological coexistence.
The sympatric equilibrium is globally stable when trait

change is sufficiently fast that there is no strict separation
of timescales between trait dynamics and ecological dy-
namics (app. B). Sufficiently fast trait dynamics confer
stability on the entire dynamical system and are essential
for stable coexistence in sympatry. Note that sufficiently
fast trait change is trait change fast enough that ecological
dynamics do not go all the way to equilibrium before any
trait change can occur. Sufficiently fast trait change in this
sense can still be substantially slower than ecological
change. The rate of trait change also is known to affect
the stability of ecological dynamics in other contexts (e.g.,
Abrams 2003).

However, even when there is no strict separation of
timescales between trait dynamics and ecological dynam-
ics, the relative rates of ecological and trait dynamics
strongly affect the transient behavior of the system. Feed-
backs between ecological dynamics and trait dynamics be-
come crucial to the transient dynamics of the system in
the absence of a strict separation of timescales.

Model Dynamics When There Is No Strict
Separation of Timescales

Figure 3A shows a typical trajectory of consumer traits in
u1, u2 phase space when trait change is slow, although not
so slow as to lead to a strict separation of timescales, and
figure 3B shows the corresponding ecological population
dynamics. Figure 3A, 3B illustrates dynamics that might
occur when traits change via genetic evolution and additive
genetic variance is low. For purposes of illustration, we
consider a case in which consumer traits are at their al-
lopatric optima, as if the two species had evolved allo-
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Figure 3: Illustrative model dynamics for high (A, B) and low (C, D) values of rate parameter . A, C, Time courses of trait change in u1, u2 phasevj

space beginning at the consumers’ allopatric optima (see fig. 1 for description of the phase space). B, D, Time courses of ecological population
dynamics corresponding to A and C, respectively. Densities in B and D are absolute, not relative. Time units are arbitrary but the same in all panels.
In A, gray dots indicate trait values at intervals of 3,000 time units, with label ti indicating time point 100i. In C, gray dots indicate trait values at
intervals of 100 time units, with label ti indicating time point 100i. Parameter values are as in figure 1, with (A, B) andv p v p 0.0002 v p1 2 1

(C, D). Initial abundances are , , , and .v p 0.005 R (0) p 0.6 R (0) p 0.6 N (0) p 0.1 N (0) p 0.091 2 1 22

patrically and then had come into secondary contact (fig.
3A). The initial position of the system in u1, u2 phase space
implies a priority effect that, in the absence of evolution
(or in the limit of very slow evolution), would lead to
extinction of consumer 2 because of its slightly lower initial
abundance in this example. In the very short term, the
consumers’ resource use traits evolve toward the sympatric
optimum. However, the ecological dynamics quickly drive
consumer 2 to near extinction, thereby altering resource
availability and the direction of trait evolution. The trait
values of the initially dominant consumer 1 evolve back
toward its allopatric optimum; because consumer 2 is rare,
consumer 1 is effectively growing in allopatry. Meanwhile,
consumer 2 evolves increased u2, and the resulting reduc-
tion in consumption pressure on resource 2 allows re-
source 2 to slowly increase in availability. At approximately
time , the system enters a region of u1, u2 phaset p 5,000
space in which consumer 2 is competitively dominant but

the ecological dynamics do not immediately respond. In-
stead, at approximately time , the rare consumert p 9,000
2 approaches its optimum trait value for the resource levels
set by the currently dominant consumer 1. Adaptive evo-
lution of both species slows to near-zero rates because each
species has attained nearly optimal trait values, given the
current resource levels. However, these resource levels do
not represent an equilibrium. At approximately time

, the ecological dynamics abruptly respond tot p 11,000
the accumulated evolutionary change, with consumer 2
increasing rapidly in abundance at the expense of con-
sumer 1. Such abrupt, lagged responses of ecological pop-
ulations to gradual directional shifts in model parameters
also occur in models of directional environmental change
(Abrams 2002). The associated shift in resource levels al-
ters the direction of selection on resource use traits. Con-
sumer 2 now evolves toward its allopatric optimum, while
consumer 1 evolves decreased u1 because this is optimal,



Character Convergence 675

Figure 4: Minimum density encountered on the transient phase from allopatric to sympatric optimum. Four values of yield coefficients y p y11 22

are depicted in each panel; other parameter values are as in figure 3; N2 is the initially disfavored competitor. The transient minimum increases as
resource requirements becomes more differentiated (y11, y22 decrease from to ) because the allopatric and sympatric equilibria become closer1/2 1/5
in phase space (fig. C1 in the online edition of the American Naturalist).

given the resource levels set by the currently dominant
consumer 2. The resulting trait evolution drives the system
into the region of u1, u2 phase space permitting stable
coexistence. At approximately time , speciest p 12,500
abundances and resource levels undergo another rapid
shift, from dominance by consumer 2 to relatively equal
abundance of both consumers. This shift alters the direc-
tion of selection. Traits evolve back to the boundary of
the region of u1, u2 phase space permitting stable coex-
istence and then evolve along the boundary to the sym-
patric optimum. The dynamics shown in figure 3A, 3B are
typical when trait change is slow and could not have been
predicted without a model incorporating both ecological
and trait dynamics.

An important feature of the ecological dynamics is tran-
sient near extinction (fig. 3B). The fact that many com-
binations of uj values lead to exclusion, together with the
fact that ecological dynamics are faster than trait dynamics,
implies that, for many initial conditions, there will be long
transient periods in which one of the two consumers is
nearly extinct. Any realistic level of environmental and/or
demographic stochasticity would lead to extinction in such
cases and prevent the sympatric coexistence equilibrium
from being achieved. Transient periods of near extinction
are especially long when the species that is initially dis-
favored in competition also evolves more slowly (results
not shown).

The possibility of transient near extinction raises the
question of how rapid trait change must be to prevent it.
Figure 4 illustrates how the transient minimum density of
the initially disfavored consumer in figure 3 varies as a
function of the rate parameter . When is low, smallv vj j

changes in make a large difference to this minimumvj

density. Figure 4 can be thought of as quantifying relative
extinction risk of the initially disfavored consumer as a
function of , assuming that extinction risk scales linearlyvj

with minimum density. Figure 4 also could be used to

identify the threshold value of that is too low to preventvj

extinction in this example, although this would require
an assumption about the minimum density below which
extinction occurs. Note that the values used in figurevj

3A, while low, are not so low as to lead to minimum
densities close to the threshold of numerical accuracy
( for the Fortran double-precision arithmetic�3082.23 # 10
used here).

The transient minimum density of the initially disfa-
vored consumer also depends on initial conditions: sys-
tems with initial trait values farther from the sympatric
optimum attain lower transient minimum densities. In
particular, when initial trait values are assumed to fall at
their allopatric optima (as in cases of secondary contact
such as fig. 3), transient minimum densities will decrease
as the distance in u1, u2 phase space between the allopatric
and sympatric optima increases (fig. C1 in the online edi-
tion of the American Naturalist). This distance depends
on consumers’ resource requirements (yij values). For the
special case of mirror image consumers (as in fig. 3), the
greatest difference between the allopatric and sympatric
optima occurs at intermediate values of . Wheny p y11 22

consumers have very similar resource ratio requirements,
allopatric and sympatric optima are similar because in-
terspecific competition has little effect on the relative
abundance of the two resources. When consumers have
contrasting, extreme resource ratio requirements, each
consumer’s optimum consumption rates in allopatry will
be strongly skewed toward the resource it requires most,
and interspecific competition will shift these optima only
slightly. As resource ratio requirements are pushed to fur-
ther extremes, the shaded coexistence region in figure 1
disappears and the sympatric optimum lies in a region of
ecologically unstable parameter space. At the (unrealistic)
limit in which each consumer requires only one of the
two resources ( ), interspecific competitiony , y r 011 22

would vanish and would not affect the optimum uj.
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Figure 5: Model dynamics for a parameter set in which consumers are
not mirror images in terms of their resource requirements (cf. figs. 1–
4). A, Initial conditions place the system at an ecologically stable equi-
librium that is not an evolutionary equilibrium. The system proceeds to
the sympatric optimum by first passing through an ecologically unstable
region of phase space. B, Time course of ecological population dynamics;
densities are absolute, not relative. Parameter values are ,S p 1.51

, , , , andS p 1 y p 0.5 y p 0.75 D p d p d p 0.15 v p v p2 11 22 1 2 1 2

.0.002

Figure 3C shows a typical trajectory of consumer traits
in u1, u2 phase space for a faster rate of trait change, such
as might be produced by phenotypic plasticity or rapid
genetic evolution, and figure 3D shows the corresponding
ecological population dynamics. Figure 3A, 3B and figure
3C, 3D differ only in the rate parameter . Model dynamicsvj

with rapid trait change are qualitatively similar to those
with slow trait change but exhibit important quantitative
differences. Rapid trait change produces faster convergence
to equilibrium (fig. 3B, 3D). Rapid trait change also pre-
vents transient periods of near extinction (fig. 3D). Con-
sumer 2 is initially disfavored in competition, but before
it can become too rare, adaptive trait change pushes the
system into a region of u1, u2 phase space that allows
consumer 2 to increase (at approximately time t p

; fig. 3C, 3D).1,200
An important and surprising feature of the transient

dynamics is nonmonotonic trait change (fig. 3A, 3C).
While consumer traits always attain the sympatric opti-
mum in the long term, there generally are transient periods
in which consumer traits move away from this optimum
rather than toward it. These transient periods occur be-
cause of feedback between the ecological and evolutionary
dynamics and can include periods of transient evolution-
ary divergence. For instance, in figure 3A, starting at ap-
proximately time , there is a transient periodt p 12,500
during which consumer 1, which has the larger uj, evolves
increased uj while consumer 2 evolves decreased uj. The
trajectory taken by each competitor’s traits always affects
and is affected by that of the other, but this coevolutionary
dynamic is never unidirectional.

A second surprising feature of the transient dynamics
is transient periods in which adaptive trait change pro-
motes competitive exclusion rather than coexistence (e.g.,
fig. 5). Even when the system has entered (or is initially
situated in) a region of trait space permitting ecological
coexistence, it can exit this region before reentering (fig.
5).

The direction of trait evolution fluctuates over time in
many systems (Bell et al. 1985; Grant and Grant 1995,
2006; Hendry and Kinnison 1999). Fluctuations in the
direction of trait evolution often reflect perturbations such
as fluctuations in abiotic environmental conditions or in-
vasion by novel species (Grant and Grant 1995, 2006).
Our model shows that such fluctuations also can be in-
ternally generated by feedbacks between ecological and
evolutionary dynamics and can occur even in the absence
of perturbations.

The parameter values in figures 1–4 illustrate a special
case of two mirror image consumers (i.e., ), buty p y11 22

we use this special case purely for clarity of illustration.
None of our analytical or numerical results depends on
the assumption of mirror image consumers (e.g., fig. 5

illustrates model dynamics for non–mirror image con-
sumers).

Character Convergence, Displacement, and Coexistence

Character convergence promotes stable ecological coex-
istence, in the sense that the optimum trait values in al-
lopatry are always located outside the range of values per-
mitting stable ecological coexistence in sympatry (app. B;
fig. 1). Even in cases where the optimum trait values in
allopatry permit both consumers to have positive equilib-
rium densities, the equilibrium is unstable, so that in the
absence of trait change, one of the two consumers would
exclude the other, depending on initial conditions (a pri-
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ority effect; app. B). By selecting for character convergence,
interspecific competition for essential resources prevents
species from attaining extremely different per capita re-
source uptake rates, which, in our model, lead to priority
effects (fig. 1, lower right). Trait optimization in allopatry
fails to preadapt species for stable coexistence even though
our models assume a trade-off in per capita resource up-
take rates and assume that species differ in their resource
requirements. These trade-offs and differences are nec-
essary but not sufficient for stable coexistence.

This result raises the question of how species that do
not share a long coevolutionary history could coexist. This
is an important question; species frequently colonize new
areas in which they have no previous coevolutionary his-
tory with the resident species. The most obvious answer,
in the context of our model, is sufficiently fast adaptive
trait change in sympatry. However, there are other pos-
sibilities not considered by our model. For instance, while
newly arrived colonists may lack any coevolutionary his-
tory with resident species, they typically have a coevolu-
tionary history with other species similar to the residents,
often in similar abiotic environments. Coevolution with
species similar to the residents may preadapt newly arrived
colonists for coexistence with residents.

Our model contrasts with previous models predicting
that competing species will evolve similar resource use
traits. Models of competition between two species for sub-
stitutable resources can predict character convergence, or
at least lack of divergence, but only when the range of
available resources is narrow, so that the opportunity for
evolutionary diversification is limited (Slatkin 1980; Taper
and Case 1992). Competition in these models still favors
divergence to the extent permitted by extrinsic limits on
resource availability. When many species compete for sub-
stitutable resources, initially dissimilar species may exhibit
character convergence but only because they are selected
to diverge from other species or because they are selected
to converge toward trait values that confer intrinsically
higher fitness for reasons independent of resource use
(MacArthur and Levins 1967; Scheffer and van Nes 2006).

Hubbell and Foster (1986) argued that competing trees
should evolve highly convergent traits because all tree spe-
cies should experience selection favoring the traits best
adapted to average forest conditions. Hubbell (2006) for-
malized this argument in a stochastic numerical model.
This argument is incomplete in that it does not account
for interspecific variation in resource requirements, which
limits the degree of convergence in resource use traits
expected in sympatry (Sterner and Elser 2002). Hubbell
and Foster (1986) and Hubbell (2006) also argued that
convergence would lead to ecological dynamics dominated
by neutral drift. This argument fails to account for the
stabilizing effect of the evolutionary forces that select for

convergence. Adaptive trait change that is sufficiently fast
to generate convergence also is sufficiently fast to stabilize
the resulting ecological-evolutionary equilibrium, assum-
ing that the current selection pressures consumers expe-
rience reflect current consumer and resource abundances.

Future Directions

Empirical evidence for or against character convergence
is nearly nonexistent, at least in part because no published
empirical study has looked for it. This lack of research is
unsurprising. Most species that compete for essential re-
sources lack visually obvious resource use traits. Visual
inspection of a plant, an alga, or a microbe reveals little
about its ability to acquire essential resources. In contrast,
coexisting competitors for substitutable resources often ex-
hibit visually striking differences in morphological re-
source use traits (e.g., Grant and Grant 2006). It was just
such visually obvious trait variation that first motivated
the development of the concept of character displacement
(Brown and Wilson 1956). Even when there is empirical
information on the resource use traits of coexisting com-
petitors for essential resources (e.g., Tilman 1977), it is
unclear whether coexisting competitors are more similar
in their traits than would have been expected by chance
or whether any unexpected similarity is due to evolution-
ary character convergence. However, the fact that coex-
isting competitors for essential resources rarely have iden-
tical ZNGIs, as predicted by our model, suggests that other
factors in addition to those considered in the model govern
the realized degree of character convergence in nature (Til-
man 1977, 1982; Grover 1997). One promising direction
for future work is testing our theoretical predictions using
laboratory experiments with rapidly evolving microbes;
such studies are already under way (J. W. Fox, unpublished
data). These experiments should last as long as possible,
in order to distinguish transient dynamics from asymptotic
dynamics.

Our approach could be extended to consider three or
more essential resources in order to examine whether non-
transitive competitive hierarchies can arise via adaptive
trait change. Recent ecological models highlight that non-
transitive competitive hierarchies can promote coexistence
of many species (Huisman and Weissing 1999; Huisman
et al. 2001; Laird and Schamp 2006). In the context of
competition for essential resources, a cyclic relationship
between consumer competitive ability and consumer stoi-
chiometry can a produce nontransitive rock-paper-scissors
competitive hierarchy (Huisman and Weissing 1999; Huis-
man et al. 2001). Such nontransitive hierarchies can lead
to nonequilibrial ecological dynamics in which the iden-
tities of the dominant competitor and the limiting resource
oscillate over time (Huisman and Weissing 1999; Huisman
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et al. 2001). It is unclear whether such nontransitive hi-
erarchies could arise and persist when per capita resource
uptake rates (and thus competitive abilities) can vary adap-
tively. It is also unclear how adaptive trait change would
affect nonequilibrial ecological dynamics. Sufficiently fast
trait change might prevent nonequilibrial dynamics.

Our work focuses on systems in which consumers feed
on essential resources that exist separately in the environ-
ment rather than packaged within prey items. However,
our results may provide insight into cases in which con-
sumers forage on different prey species that vary in their
relative content of different essential nutrients. Different
prey species comprise nutritionally complementary re-
sources in such cases (Abrams 1987b). Consumers of nu-
tritionally complementary prey must optimize the ratio in
which they consume those prey, in order to optimize the
ratio in which they obtain the essential resources contained
within those prey (Behmer and Joern 2008; Lee et al. 2008).
The fact that animal consumers typically can obtain all
their essential resources from any single prey species (albeit
in suboptimal ratios) suggests that competition might se-
lect for either convergence or divergence in resource use
in such situations, depending on the relative abundances
of the resources. Abrams (1987b) describes the optimal
resource use traits for a single consumer of two comple-
mentary resources; the extension to the two-consumer case
would be an interesting direction for future work.

Future work also should consider the robustness of our
results to alternative assumptions. We assume that con-
sumers can adapt to changes in resource availability only
by changing their per capita uptake rates. In reality, many
species have somewhat flexible resource requirements,
which may change adaptively in response to changes in
resource availability (Bloom et al. 1985; Sterner and Elser
2002; Klausmeier et al. 2004). Although flexibility in re-
source requirements always has limits, accounting for flex-
ibility in resource requirements will be necessary for a
complete understanding of adaptive trait change in species
competing for essential resources. Rates of evolutionary
trait change might be temporally variable as well, for in-
stance, because genetic variance likely will change as pop-
ulation size changes and as traits approach an adaptive
optimum (Abrams et al. 1993; Barton and Turelli 2004;
app. A). We do not consider nutrient recycling, which
could have consequences for the identity of the limiting
resource and thus for the evolution of resource uptake
rates (Daufresne and Hedin 2005). Our model considers
only two species, the maximum number that can coexist
on two limiting resources at equilibrium in a well-mixed
system. It would be interesting to extend our model to
consider evolution of essential resource use in many-
species systems. Such an extension would have to increase
the number of limiting resources or incorporate another

mechanism, such as consumer density dependence, allow-
ing more than two consumers to coexist at equilibrium.
The nature of any additional coexistence mechanisms
might well affect the results. Mechanisms generating den-
sity dependence in consumer per capita growth rates alter
the evolutionary effects of competition for substitutable
resources (Abrams 1986) and might do the same for es-
sential resources. Our results serve as a baseline case on
which alternative models can be built.

The possibility of character convergence has important
implications. Competition is thought to be a key driver
of evolutionary diversification in animals (Schluter 2000).
But insofar as the members of the other kingdoms of life
compete for essential resources, they may be diverse de-
spite competition, not because of it. Further theoretical
and empirical work should explore the possibility.
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Appendix A from J. W. Fox and D. A. Vasseur, “Character
Convergence under Competition for Nutritionally Essential Resources”
(Am. Nat., vol. 172, no. 5, p. 000)

Alternative Models of Adaptive Trait Change
Here we illustrate the dynamics of alternative models of adaptive trait change. None of the alternative models
alters the position or stability of the equilibria of the model presented in the main text. However, model transient
dynamics are somewhat sensitive to how trait change is modeled. All of the alternative models retain the
description of ecological dynamics used in the main text (eqq. [1], [2]).

Our first alternative model is a modified version of the model of Klausmeier et al. (2007). We consider a
simple case in which consumer j can adjust its uj values at a constant rate so as to achieve colimitation (maximal
fitness):

c u , y R (1 � u ) 1 y R u R limitingj j 2j 2 j 1j 1 j 1duj p �c (1 � u ), y R (1 � u ) ! y R u R limiting . (A1)j j 2j 2 j 1j 1 j 2dt {0, y R (1 � u ) p y R u colimiting2j 2 j 1j 1 j

Here, cj is a constant that scales the rate of change in uj. In contrast to the model in the main text, the rate of
trait change is unrelated to the fitness gradient (cf. eq. [3]). Equation (A1) has the virtue of simplicity and will
be empirically appropriate when the rate at which phenotypically plastic consumers can alter their resource use
traits is set by constraints independent of the fitness gradient. For instance, in the context of single-celled
organisms that acquire resources via uptake proteins on the cell surface, equation (A1) describes the conversion
of uptake proteins for resource 1 into uptake proteins for resource 2, and vice versa, via first-order kinetics
(Klausmeier et al. 2007; see also Van den Berg et al. 2002). Equation (A1) also describes cases in which
phenotypically plastic consumers have only qualitative information about the fitness gradient. When individuals
know only the sign of the slope but not the magnitude, they might be expected to adjust their resource use traits
at a constant rate so as to increase fitness. The discontinuity of equation (A1) creates problems for numerical
integration, so we approximate it with a continuous function:

duj p c [�u � f(x , h)], (A2)j j jdt

where is defined as in equations (6) in the main text.f(x , h)j

Model dynamics with trait change described by equation (A2) are qualitatively similar to those of the model
used in the main text (fig. A1; cf. fig. 3 in the main text). The only notable difference is that the rate of trait
change does not slow when traits near their optimum values, given the current resource levels.

Ma et al. (2003) argue that the rate of trait change should slow as uj nears the limiting values of thedu /dtj

trait’s distribution (here 0 and 1). They envision a population in which individual traits vary little around the
population mean and in which the population mean changes as phenotypically plastic individuals sample the
fitness consequences of changing their trait values. The rate of sampling should decrease as the population mean
approaches the maximum or minimum possible trait value, both because there is less scope for sampling near the
end points of the trait distribution and because some fraction of the population will have already reached the
limiting value for the trait. To incorporate this assumption, we modify equation (A2) as

duj p V(u )[�u � f(x , h)], (A3)j j jdt
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where

2n n nV(u ) p c 2 u (1 � u ) . (A4)j j j j

The parameter is a unimodal function that slows the rate of trait change to 0 at the extreme valuesV(u ) u p 0j j

and 1. The parameter cj now represents the maximum rate of trait change, which is realized when . Theu p 0.5j

parameter n controls the breadth of the function; larger values of n further decrease the rate of trait change at all
but the function’s maximum at and the end points. Figure A2 shows the dynamics of the modelu p 0.5j

adapted from Ma et al. (2003), using relatively low values of the rate parameter cj. Similar to the model in the
main text (fig. 3A, 3B), consumer 2 initially goes through a transient phase of low density. During this phase, u1

remains near its allopatric optimum while u2 increases so that consumer 2 can attain more of its limiting
resource, R1. This adaptation drives the system into the region of u1, u2 phase space where consumer 2 is the
superior competitor. Here the competitive superiority combines with its quicker rate of trait change (because u2 is
nearer to 0.5 than is u1) to produce a phase of low density of consumer 1. The system now moves toward the
trait values that are optimal for both species, given the resource levels set by the currently dominant consumer 2.
To approach these trait values, the system must enter the region of u1, u2 phase space permitting stable
coexistence. But now the model’s behavior deviates from that of the model used in the main text. Trait evolution
overshoots the sympatric equilibrium just after time because the trait values are such that the currentlyt p 1,500
dominant consumer 2 retains its ability to change its uj value more rapidly than can consumer 1. However,
around time , further trait change brings u1 closer to 0.5 than is u2, so that consumer 1 now evolvest p 1,700
more rapidly than consumer 2. The ecological dynamics respond to the accumulated trait change, and the system
is driven back to the sympatric equilibrium.

Abrams (1999) proposed two other functions that slow the rate of trait change near the extrema of trait values.
The first function assumes that the rate changes little over most of the range of trait space but decays rapidly to
0 at the extreme values 0 and 1. Using equation (A3) to model the direction of trait change, we define asV(u )j

�s
V(u ) p c exp , (A5)j j { }(u � s)[1 � (u � s)]j j

where the shape parameter s is a small, positive constant that ensures that across most of the range ofV(u ) ≈ cj j

uj. Abrams (1999) assumed a value for most of his simulations. For our purposes of contrasting thes p 0.001
(co)adaptation of consumers in allopatry versus sympatry, this function has a negligible impact on dynamics. At
the allopatric optimum, which is the most extreme values of uj encountered in our simulations, the difference
between and a model with constant cj (eq. [A2]) is less than 1%. This small difference leads to onlyV(u )j

negligible differences in dynamics.
The second function proposed by Abrams (1999) is derived from quantitative genetics and assumes that the uj

are S-shaped functions of some polygenic trait (x). This function is

2V(u ) p v {[gu (1 � u )]} , (A6)j j jj

where is the additive genetic variance of x (as in eq. [3] in the main text) and g is a scaling coefficient,vj

chosen by Abrams (1999) such that at equilibrium. This function is very similar to that proposed byV(u ) p vj j

Ma et al. (2003; eq. [A4]), albeit different in height at the peak and with slightly different curvature. Given the
similarities in shape, this function generates the same qualitative behavior as the model of Ma et al. (2003) when
inserted into equation (A3) in place of equation (A4), only for different values of the scaling parameters cj and vj

(fig. A2).
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Figure A1: Dynamics of the trait change model adapted from Klausmeier et al. (2007) for slow (A, B) and fast
(C, D) rates of trait change. Upper panels show trait dynamics in u1, u2 phase space beginning at the consumers’
allopatric optima; lower panels show the corresponding ecological dynamics. Time units are arbitrary but
consistent with those in other figures. Densities in B and D are absolute, not relative. Parameter values are c pj

(A, B) and (C, D), the same as the values of used in the corresponding panels in figure 3 in0.0002 c p 0.005 vj j

the main text. Other parameters and initial conditions are as in figure 3 in the main text.
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Figure A2: Time courses (A) of the trait change model adapted from Ma et al. (2003) in u1, u2 phase space
beginning at the consumers’ allopatric optima. See figure 1 for description of the phase space. B, Ecological
population dynamics. Densities in B are absolute, not relative. Time units are arbitrary but consistent with those
in other figures. Parameter values are and ; other parameter values and initial conditions are asc p 0.001 n p 2j

in figure 3 in the main text.
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Appendix B from J. W. Fox and D. A. Vasseur, “Character
Convergence under Competition for Nutritionally Essential Resources”
(Am. Nat., vol. 172, no. 5, p. 000)

Analytical Results
Ecological Dynamics of Competitors for Essential Resources

First let us consider the ecological dynamics of the system (eqq. [1], [2]) in the absence of evolution ( ) orv p 0j

phenotypic plasticity ( ). The zero net growth isocline (ZNGI) for consumer j is the set of resourcec p 0j

densities where . The ZNGIs are “corners,” each composed of a vertical and a horizontal line in thedN /dt p 0j

R1, R2 phase space. In allopatry, the positions of these vertical and horizontal lines along the R1 and R2 axes
denote the equilibrium densities of R1 and R2 when they are the limiting resources for consumer j. The
equilibrium density of Ri when limiting for Nj (here denoted ) can be found by solving equation (1b) at∗Ri(N )j

equilibrium:

d1∗R p , (B1a)1(N )1 y u11 1

d1∗R p , (B1b)2(N )1 y (1 � u )21 1

d2∗R p , (B1c)1(N )2 y u12 2

d2∗R p . (B1d)2(N )2 y (1 � u )22 2

Feasibility of a two-consumer equilibrium requires that the ZNGIs intersect in the R1, R2 phase space (León and
Tumpson 1975). By necessity, this means that either

∗ ∗R ≥ R , (B2a)1(N ) 1(N )1 2

∗ ∗R ≥ R (B2b)2(N ) 2(N )2 1

or the opposing condition (which has the signs reversed) must be met. Because the two cases provide symmetric
results, we will consider only the case defined in equations (B2). By substituting the equilibrium densities from
equations (B1) into equations (B2), we can solve for the limits of consumer uptake rates that will allow
feasibility of a two-species equilibrium:

d y1 12u ≤ u , (B3a)1 2d y2 11

d y2 21u ≥ 1 � (1 � u ). (B3b)2 1d y1 22

The pair of per capita uptake rates u1, u2 that lies on the boundaries of the conditions in equations (B3) defines
the unique case where and . This unique pair of per capita uptake rates allows both∗ ∗ ∗ ∗R p R R p R1(N ) 1(N ) 2(N ) 2(N )1 2 1 2

consumers to attain colimitation. If only condition (B3a) is violated, consumer 1 will set a lower R∗ for both
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resources, thereby competitively excluding consumer 2 (and vice versa). If conditions (B3a) and (B3b) both are
violated, the outcome of competition depends on initial conditions (a priority effect).

Feasibility of a two-consumer equilibrium does not imply ecological coexistence unless the equilibrium is
stable. The two-consumer equilibrium is stable provided that each consumer ingests a larger fraction of the net
rate of supply of its limiting resource (that for which it has the larger R∗ compared with the other consumer)
than of its competitor’s limiting resource (León and Tumpson 1975). Given our assumption in equations (B2),
stable coexistence of two consumers requires that

g /y g /y1 11 1 21
1 , (B4a)∗ ∗S � R S � R1 1(N ) 2 2(N )1 2

g /y g /y2 22 2 12
1 . (B4b)∗ ∗S � R S � R2 2(N ) 1 1(N )2 1

Substitution of and into equations (B4) gives the requirements for the stability of the two-consumer∗ ∗R R1(N ) 1(N )1 2

equilibrium in the u11, u12 phase space:

d y1 12u 1 , (B5a)1 y {y S � y S � [d /(1 � u )]}11 12 1 22 2 2 2

d y2 21u ! 1 � . (B5b)2 y [y S � y S � (d /u )]22 21 2 11 1 1 1

Together, the conditions in equations (B3) and (B5) enclose the region of stable two-species coexistence in the
u1, u2 phase space (see fig. 1 in the main text).

Note that the optimum uj values in sympatry lie on the boundary of the coexistence region. Accordingly, in
the absence of adaptive trait change, the ecological dynamics of coexisting species would exhibit neutral stability
if species’ traits were fixed at the sympatric optimum.

Adaptive Dynamics of Competitors for Essential Resources

In the case of one consumer species feeding on a pair of resources, adaptive trait change (due to genetic
evolution or phenotypic plasticity) will maximize consumer fitness by generating colimitation of consumer
growth. Under colimitation, the ratio in which the resources are required by consumer j ( ) will match they /y1j 2j

ratio in which resources are consumed (Abrams 1987a). The same is true for two competing consumers in
sympatry; however, in this case, adaptation must respond to resource densities that are influenced by both
consumers.

The boundaries of the inequalities (B3) define lines in the u11, u12 phase space at which consumers 1 and 2 are
colimited. The intersection of these lines defines the unique sympatric optimum where both consumers achieve
colimitation. In the u1, u2 phase space, this sympatric optimum, mj(S), is

y (d y � d y )12 1 22 2 21u p , (B6a)1(S) d (y y � y y )2 11 22 12 21

y (d y � d y )11 1 22 2 21u p . (B6b)2(S) d (y y � y y )1 11 22 12 21

For comparison with the sympatric optimum, it is useful to define the optimum in allopatry, mj(A). When
consumer 1 exists in the absence of consumer 2, we find, by setting and equating expressions for ,∗dR /dt p 0 Ni 1

that

y y11 21∗ ∗D(S � R ) p D(S � R ). (B7)1 1(N ) 2 2(N )1 1g g1 1
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If we substitute and from equations (B1), expression (B7) leads to the quadratic equation∗ ∗R R1(N ) 2(N )1 1

2Xu � (X � 2)u � 1 p 0, (B8)1(A) 1(A)

where . This equation has two real roots but only one ever lies in the domain of feasibleX p (y S � y S )/d11 1 21 2 1

parameter space (fig. B1):

2�X � 2 � X � 4
u p . (B9)1(A) 2X

Following the same logical progression, it can be shown that when consumer 2 exists in allopatry, the optimum
per capita uptake rate is

2�Y � 2 � Y � 4
u p , (B10)2(A) 2Y

where .Y p (y S � y S )/d22 2 12 1 2

We wish to know whether it is possible for the two consumers, when preadapted to allopatric conditions, to
coexist in sympatry. Because the conditions for the existence of a two-consumer equilibrium (eqq. [B2]) always
have positive slope in the u1, u2 phase space, the intersections of these conditions and the stability boundaries
(eqq. [B4]) represent the most extreme values of u1 and u2 that permit stable coexistence (see fig. 1). Solving for
the intersection of equations (B2b) and (B4b), we find

d y (1 � u ) d y2 21 1 2 211 � ! 1 � . (B11)
d y y [y S � y S � (d /u )]1 22 22 21 2 11 1 1 1

Some simplification yields

y S � y S 1 121 2 11 1
1 � , (B12)

d 1 � u u1 1 1

and substitution of X from equation (B8) yields

2Xu � (X � 2)u � 1 1 0. (B13)1 1

The inequality (B13) takes the same form as the solution of the allopatric optimum (eq. [B8]); however, the
allopatric optimum can never satisfy the stability criterion for sympatry (eq. [B13]).

Thus, consumers N1 and N2 can never be preadapted for stable coexistence by adaptation to allopatric
conditions; rather, stable coexistence in sympatry requires (fig. B1). Furthermore, the sympatricm ! m1 1(A)

evolutionary optimum, which lies on the boundary of the region of stable coexistence, is subject to the same
constraint: . A similar logical progression can be used to arrive at this condition as it applies to them ! m1(S) 1(A)

second consumer, . Given our assumption in equations (B2), a condition for stable coexistence at them 1 m2(S) 2(A)

sympatric evolutionary optimum can be written

m 1 m 1 m 1 m . (B14)1(A) 1(S) 2(S) 2(A)

Thus, for stable sympatric coexistence at the sympatric optimum, consumer traits must converge from their
allopatric optima toward more intermediate values.
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Figure B1: Parabola generated by for and . The root of this equation,2y p Xm � (X � 2D)m � 1 X ! 0 X 1 01 1

which falls in the interval (0, 1), is the allopatric optimum (m1(A)). In sympatry, stable coexistence requires that
; this occurs only in the feasible parameter space ( ) when .y ! 0 0 ≤ m ≤ 1 m ! m1 1(S) 1(A)
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Appendix C from J. W. Fox and D. A. Vasseur, “Character
Convergence under Competition for Nutritionally Essential Resources”
(Am. Nat., vol. 172, no. 5, p. 000)

Plot of Transient Minimum Density of the Initially Disfavored Consumer

Figure C1: Transient minimum density of N2 (solid line) for the evolutionary model across a range of symmetric
yield coefficients, given the parameter values from figure 3 in the main text. Overlaid is the Euclidean distance
from the allopatric to the sympatric optimum in u1, u2 phase space (dashed line). As parameters dictate a larger
distance between the allopatric and sympatric optima, adaptation requires increased time and results in lower
transient densities.
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