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Evidence for synchronous fluctuations of spatially separated populations is ubiquitous in the literature, including
accounts within and across taxa. Among the few mechanisms explaining this phenomenon is the Moran effect,
whereby independent populations are synchronized by spatially correlated environmental disturbances. The
body of research on the Moran effect predominantly assumes that environmental disturbances within a local site
are serially uncorrelated; that is, successive observations in time at a particular local site are independent. Yet,
many environmental variables are known to possess strong temporal autocorrelation � a character which has
often been described as ‘colour’. The omission of environmental colour from research on the Moran effect may
be due in part to the lack of methods capable of generating sets of time series with a desired colour and spatial
correlation. Here I present a novel and simple method designated as ‘phase partnering’ to generate such sets of
time series and I investigate the combined impact of spatial correlation and environmental colour on population
synchrony in two common models of population dynamics. For linear population dynamics, and for a subset of
nonlinear population dynamics, coloured environments intensify the Moran effect when population dynamics
are spatially heterogeneous; in coloured environments the spatial correlation between populations more closely
mimics the spatial correlation between their respective environments. Given that most environmental variables
are coloured, these results imply that the Moran effect may be a far more significant driver of regional-scale
population and interspecific synchrony than is currently believed.

Spatial population synchrony is a well-known and
seemingly ubiquitous phenomenon, occurring on local
and regional scales within a wide range of different taxa
(reviewed by Bjørnstad et al. 1999, Liebhold et al.
2004, Ranta et al. 2006). Three mechanisms are known
to give rise to this phenomenon: 1) extrinsic fluctua-
tions in climate variables which are spatially-correlated
(Moran 1953, Royama 1992, Hudson and Cattadori
1999); 2) dispersal of individuals between spatially
segregated populations (Heino 1998, Lande et al. 1999,
Ranta et al. 1999, Ripa 2000); and 3) interactions with
other populations which are synchronized across space
as a consequence of 1), 2), or due to a homogenous and
large geographic range (Small et al. 1993, Ims and
Andreassen 2000, Koenig 2001, Liebhold et al. 2004,
Ranta et al. 2006, Ripa and Ranta 2007). A special case
of the first mechanism was formally described by
Moran (1953) and has since become know as Moran’s
theorem (Royama 1992). Moran’s theorem states that a

pair of spatially separated populations, obeying iden-
tical linear dynamics, in absence of dispersal, and
subject to random climate fluctuations, will demon-
strate a cross-correlation that is equivalent to the spatial
correlation of their climates. The lack of such ideal
conditions in the field has given rise to a more loosely
applied term � the ‘Moran effect’ � which implies a
climate induced synchronization that is weaker than
predicted by Moran’s theorem (Royama 1992). Given
that climatic fluctuations are spatially autocorrelated
over large distances (Koenig 2002), the Moran effect
has been suggested as a significant driver of population
synchrony (Hudson and Cattadori 1999).

Since Royama (1992) revisited Moran’s (1953) early
work, theoretical research on the Moran effect has
reawakened with particular attention given to testing
the constraints of Moran’s original theorem. In parti-
cular researchers have evaluated the Moran effect in
populations with nonlinear dynamics (Ranta et al.
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1997, 1999, Grenfell et al. 1998, Greenman and
Benton 2001, Engen and Sæther 2005, Royama
2005, Abbott 2007), dispersal (Ranta et al. 1995,
1999, Kendall et al. 2000, Ripa 2000, Liebhold et al.
2006, Abbott 2007), and in populations whose dy-
namics are governed by different density dependences
(Peltonen et al. 2002, Ripa and Ives 2003, Engen and
Sæther 2005, Royama 2005, Hugueny 2006, Liebhold
et al. 2006). This latter constraint of Moran’s theorem
may be particularly important given that geographic
variation may lead to qualitatively different population
dynamics within a species (Peltonen et al. 2002,
Hugueny 2006, Liebhold et al. 2006) and that
interspecific synchrony occurs (Liebhold et al. 2004,
Tedesco et al. 2004, Ranta et al. 2006) despite obvious
and often large differences in population dynamics.
Recent work has shown that the Moran effect generally
weakens as the parameters governing density depen-
dence diverge (Ripa and Ives 2003, Engen and Sæther
2005, Royama 2005, Hugueny 2006), suggesting that it
may be a limited source of synchrony when dynamics
vary distinctively across space.

Previous work on population synchrony has almost
exclusively assumed that climate fluctuations within a
local habitat lack temporal autocorrelation (Heino
1998, Fontaine and Gonzalez 2005), yet many climate
variables are known to demonstrate positive temporal
autocorrelation � a positive relationship between
successive observations recorded at a fixed location
(Halley 1996, Pelletier 2002, Cyr and Cyr 2003,
Vasseur and Yodzis 2004). This character can be
described by the spectral exponent (g), which expresses
the relative contribution of fluctuations at different
frequencies to the temporal variance of the observa-
tions, assuming that these contributions scale as 1/fg

(Halley 1996). When g�0, all frequencies contribute
equally to the temporal variance and successive ob-
servations are unrelated (they lack autocorrelation); this
form of disturbance is commonly referred to as ‘white’
noise. Alternatively, when g�0, subsequent observa-
tions are positively associated due to an increased
importance of low-frequency contributions to the
temporal variance. This family of disturbances are
commonly referred to as ‘red’ or ‘reddened’ noises in
analogy to the frequency composition of red light (cf.
‘blue’ noises which have gB0) and are well suited to
describing temporal fluctuations in environmental
variables (Halley 1996).

Although the importance of coloured noise for
population and community dynamics has been well
studied (Ripa and Lundberg 1996, Kaitala et al. 1997,
Petchey et al. 1997, Heino 1998, Cuddington and
Yodzis 1999, Ripa and Ives 2003, Wichmann et al.
2005, Schwager 2006), few studies have described its
impact on population synchrony. Heino (1998) de-
monstrated that red noise could improve population

synchrony in a non-linear metapopulation model where
patches were linked by dispersal and patches experi-
enced a ‘local’ and ‘global’ set of ‘reddened’ environ-
mental conditions. Although this formulation
introduced spatial correlation among the coloured
environments in each local habitat, it did not allow
the correlation to vary with the distance between
patches as research suggests it should (Koenig 2002).
Using autoregressive models, Ripa and Ives (2003)
investigated the impact of coloured noise on the
dynamics of competitors and predator�prey systems,
but limited their discussion to the analytically solvable
cases where the environmental noises were either
independent or identical. They showed that environ-
mental colour caused dynamics to align along certain
eigenvectors in the phase space, therefore altering the
correlation between populations. A recent laboratory
experiment demonstrated that environmental fluctua-
tions possessing a reddened spectrum generated syn-
chronous dynamics in rotifer populations whereas
environmental fluctuations possessing a white spectrum
did not (Fontaine and Gonzalez 2005). Experimental
work has outpaced theory in this area, potentially, for
want of a method to generate sets of coloured noises
with any desired cross- (spatial) correlation. Herein
I introduce a novel and simple method designated as
‘phase partnering’ for generating such noises and I test
two commonly employed population models (linear
and non-linear) to determine the influence of environ-
mental colour on the operation of the Moran effect.

Generating coloured cross-correlated
noise using ‘phase partnering’

The goal of the method outlined below is to generate a
pair of ‘environmental’ time series which have a desired
cross-correlation (herein referred to as rj) and a desired
colour (referred to precisely by the spectral exponent g).
Although multiple methods exist for independently
generating coloured and cross-correlated time series
(Halley 2004, Ripley 2006), sequential application of
such methods demonstrates the inherent problem; post-
hoc colouring of cross-correlated noises (using spectral
synthesis or autoregressive filtering) introduces large
variability into the desired cross-correlation (below),
and vice-versa, post-hoc cross-correlating of coloured
noises (e.g. using linear combination) introduces large
variability into the desired colour (Vasseur unpubl.).
Below I outline an approach which addresses this
problem by concurrently applying the desired colour
g and cross-correlation rj to a pair of environmental
time series. With this method, the desired colour and
cross-correlation of the time series are achieved with
near-perfect accuracy and precision.
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Environmental time-series j1,t and j2,t are gener-
ated using a modification of the method known as
spectral synthesis (Cuddington and Yodzis 1999,
Halley 2004, Fontaine and Gonzalez 2005) in which
every tth observation is generated by summing n/2
sinusoids:

ji;t�
Xn=2

f�1

1

f g=2
sin[2pft=n�2pft=n�ui(f )] (1)

where n is the number of observations in the time series, t
is time, f is frequency, and ui(f) is a vector of phase
operators which are independent and randomly drawn
from a uniform distribution on [0,2p). This procedure
generates stationary time series (for gB2) which are
normally distributed with zero-mean and a spectral
exponent g. Multiple iterations of this method produce
time series which are independent � due to the
independence of phase vectors u in Eq. 1. However, if
the phase vectors of successive iterations of Eq. 1 are not
independent, then neither are the resultant time series j1

and j2 � an aspect which the method outlined below
utilizes to generate cross-correlation.

The cross-correlation between two time series j1 and
j2 can be predetermined by ‘partnering’ the phase
vectors u1 and u2 so that the cross-correlation between
the two time series is preserved at each of the n/2
frequencies. To generate any desired cross-correlation
between j1 and j2, the phase operators ui(f) are related
by the function:

u2(f )�u1(f )�d (2)

where d is constant phase shift which is determined by
rj according to d�cos�1(rj) (see Appendix 1 for
derivation). Under this transformation, when rj�1,
the phase shift d�0 and thus j1 and j2 are identical
time series. At the alternative extreme rj��1, the
phase shift d�p and j1 and j2 are simply reflections of
each other about the origin. For the intermediate cases,
where �1.0BrjB1.0, j1 and j2 are unique, however,
the addition of a constant phase shift d to each
sinusoidal component generates a tendency for the first
time series to lag behind the second. This tendency is
undesirable since it can introduce large time-lagged
cross-correlations between environmental and popula-
tion dynamics. To ensure that j1 does not consistently
lag behind j2 it is possible to make use of the fact that
cos�1(rj) is a multivalued function and randomize the
phase shift d according to d(f)�of�cos�1(rj) where
of is randomly selected from a ‘coin toss’ as �1 or 1
with equal probability. This randomization preserves
the cross correlation between j1 and j2 but shuffles the
‘leading’ and ‘lagging’ effect amongst frequencies so
that there is no apparent effect between the two time-
series. In practice, spectral exponents with large
magnitude may be prone to this behaviour even when

the lags are shuffled amongst frequencies, since a small
proportion of frequencies and their associated lags,
dominate the variance of the resultant time series. For
the range of spectral exponents used herein, and those
most typical of natural environments, this ‘small
sample’ issue is not problematic. Following generation
of the time-series, their variances can easily be standar-
dized to a desired value by vector multiplication or by
the method of spectral mimicry (Cohen et al. 1999)
which ensures that the mean, variance, and range of j1

and j2 are equal, but which can add some variability to
the spectral exponent and cross-correlation of the noises
(Vasseur unpubl.).

To ensure that the method itself does not introduce
any artifactual elements into the time series it is
reasonable to analyze the two series in the absence of
any cross-correlation and colour (rj, g�0; note that
in practice it is unreasonable to generate independent
vectors of white noise using phase partnering when a
simpler random number generator would suffice). In
this example the sample mean environmental condi-
tions m̂j1

and m̂j2
equal zero and the variances are

standardized to a value of 1 (Fig. 1). The frequency
distributions of each series do not differ from
normally distributed noise (Kolmogorov-Smirnov
test; D�0.023, 0.028; p�0.4) and the autocorrela-
tion function (ACF; Fig. 1d) shows no apparent
autocorrelation within either series (Durbin-Watson
test; d�2.009, 1.999). The cross-correlation function
(CCF; Fig. 1c) demonstrates that fewer than 5% of
the cross-correlation coefficients deviate significantly
from zero, and more importantly, that none lie far
outside the significance intervals 92//

ffiffiffi
n

p
(Chatfield

2004), indicating that there is no appreciable correla-
tion at any time-lags between the two time series.

In Fig. 2 the same plots are shown for two series with
n�1000, g�1.0, and rj�0.75 Comparing Fig. 1a
and 2a, the temporal autocorrelation that is introduced
by the change in g is evident in the relatively small
changes at successive time steps. Like the previous
example the frequency distributions do not differ from
normal (D�0.016, 0.019; p�0.88), however the test
for autocorrelation obviously fails due to the autocorre-
lation introduced into each series by the non-zero
spectral exponent g (Fig. 2d). Here the CCF (Fig. 2c)
also demonstrates a long tailed distribution due to the
positive cross-correlation between- and autocorrelations
within these series (Fig. 2d). The most important
observation from Fig. 2d is that the cross-correlation is
maximized at lag�0, where the desired cross-correlation
coefficient is near-perfectly conserved (/r̂j�0:7501):

Like 1/f noises, first order autoregressive models
AR(1) are also commonly used to generate autocorre-
lated noises for the subsequent study of population
dynamics in noisy environments (Petchey et al. 1997,
Heino 1998, Ripa and Ives 2003, Wichmann et al.
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2005, Schwager et al. 2006). AR(1) noise differs in
many respects to 1/f noise (Halley 1996); most
notably, AR(1) noise has a finite variance (Wichmann

et al. 2005) whereas the variance of 1/f noise increases
with the length of the series (Halley 1996). Despite
clear differences in the two models, there is still some

Fig. 1. Time series analysis of j1 (black lines) and j2 (gray lines) for g�0, rj�0, and n�1000, showing (a) the time series of
the two noise processes; (b) frequency distributions of the values from the two processes; (c) the cross-correlation function
(CCF); and (d) the autocorrelation functions (ACF) of the two processes. Values in excess of the dashed lines (92//

ffiffiffi
n

p
) in panels

(c) and (d) are significantly different from zero (a�0.05).

Fig. 2. Time series analysis of j1 (black lines) and j2 (gray lines) for g�1.0, rj�0.75, and n�1000, showing (a) the time
series of the two noise processes; (b) frequency distributions of the values from the two processes; (c) the cross-correlation
function (CCF); and (d) the autocorrelation functions (ACF) of the two processes. Values in excess of the dashed lines (92/�n)
in panels (c) and (d) are significantly different from zero (a�0.05).
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debate over which model best describes empirical
records of environmental variability (Cyr and Cyr
2003, Vasseur and Yodzis 2004); however, inferential
climate records suggest that power-law (1/f) relation-
ships prevail over the long-term (Koscielny-Bunde
et al. 1998, Pelletier 2002). AR(1) noises can also be
constructed to produce a desired level of cross-
correlation (r8) and so comparing cross-correlated
AR(1) noises with those produced by ‘phase partner-
ing’ provides a useful contrast. AR(1) environmental
time series is generated by:

8i(t)�a �8i(t�1)�oi(t) (3)

where 05a51 controls the degree of autocorrelation,
oi(t) is random variable drawn from a normal
distribution, and i is an index variable. If two time-
series are generated using two random vectors (o1

and o2) which are correlated (for such methods see
Ripley 2006), the resultant time series have an
expected cross correlation r8 which is equal to that
of the random vectors. However, filtering these
correlated noises through the AR(1) process can
introduce relatively large errors into the resultant cross
correlation. Figure 3 compares the error introduced by
this method compared to phase partnering as the
autocorrelation (colour) increases. For AR(1) noise the
error grows as the as the autocorrelation increases; this
occurs because the two series become increasingly
dominated by historical (and perhaps different) values.
The origin of the pattern shown for phase-partnered
1/f noise (Fig. 3b) is less clear, but may be a
consequence of fewer frequencies contributing to the
noise at larger values of g. Both models produce the
largest errors when the desired cross-correlation is zero
(not shown). When comparing the two models in
uncorrelated environments (a, g�0) the error is
approximately an order of magnitude smaller for
phase-partnered 1/f noise; however, for in strongly
autocorrelated noises (a�1, g�2) the error is four to
five orders of magnitude smaller.

Population dynamics in coloured
cross-correlated environments

Although the method described above is capable of
generating time-series over the entire range of noise
colours, the remainder of this paper focuses on the
impact of reddened environmental noise (g�0), since
environmental variables of ecological interest almost
exclusively take such form (Pelletier 2002, Vasseur and
Yodzis 2004, Cyr and Cyr 2003). Herein ‘colour’ refers
to reddened noises.

Linear population dynamics

Consider a pair of biological populations whose log-
transformed abundances are defined Y1 and Y2 and
whose dynamics are governed by a first-order linear
autoregressive equation:

Yi;t�1�ai�bi Yi;t�ji;t where i�1; 2 (4)

The parameters a and b describe the population renewal
process and j1 and j2 are environmental variables.
Here, j1 and j2 are generated by the method of phase
partnering described above and standardized to have
zero mean, equal variances, a colour (g) and a cross-
correlation at lag-0 represented by rj. Using an
analogous second-order model, Moran (1953) noted
that when Y1 and Y2 have identical density depen-
dences, their cross-correlation is identical to that of
their environments. For Eq. 4, Moran’s theorem states
that when b1�b2, the proportionality constant
K�rY/rj will equal 1. Since it is unlikely that two
spatially separated populations would have identical
density dependences, Royama (2005) and Hugueny
(2006) expanded Moran’s original theorem to popula-
tions with spatially heterogeneous dynamics. In this
case, K is always less than 1 and as populations become

Fig. 3. The error (observed � expected correlation) produced
by (a) an AR(1) process and (b) phase association over a range
of autocorrelation (colour). At each value of the independent
variables (a and g), a uniform set of cross-correlations from
�1.0 to 1.0 were used to generate the points on the figure.
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increasingly heterogeneous, their synchrony weakens
(K decreases; Royama 2005). Note that Hugueny
(2006) describes a similar proportionality constant
which is termed the demographic component (DC) of
population synchrony.

The colour of environmental noise has no influence
on populations with homogeneous dynamics (i.e.
identical density dependence); however, as the popula-
tion dynamics become increasingly heterogeneous (as
½b1�b2½ grows), noise colour becomes an important
determinant of population synchrony (Fig. 4). For
most parameter combinations, coloured environments
(g�0) maintain higher levels of population synchrony
than do white environments (g�0). As the environ-
mental noise colour becomes deeply reddened (g:2)
the population cross-correlation nearly equals that of
the environment, demonstrating that the Moran effect
can synchronize populations whose dynamics are
governed by very different density dependent processes.

Coloured environments are characterized by long
runs of similar conditions due to the relatively weak
influence of high frequencies in their spectrum. This
property allows populations governed by models with
stable equilibria to maintain a closer association with
their equilibrium densities � a phenomenon known as
‘tracking’ (Roughgarden 1975, May 1976, Petchey
2000). For any pair of populations whose (stable)
equilibria demonstrate a correlated response to chan-
ging environmental conditions, improved ‘tracking’
should thereby cause population fluctuations to mimic
the correlated fluctuations the environment. In this
model (Eq. 4) the equilibrium varies with environ-
mental conditions according to /Y*

t �(a�jt)=(1�b);
and it is stable provided that population dynamics are
stationary �1BbB1 (Royama 2005, Hugueny
2006). If the mean environmental condition is zero,
then the average density around which the equilibrium
fluctuates is a/(1�b) and the residual fluctuations are
equal to j1/(1�b). Provided that populations are
subject to the stationarity constraint, the residuals,
and thereby the equilibrium densities will have the
same cross-correlation as that of their environments
(note that the mean environmental condition need not
be zero for this to be true). Thus, the improved tracking
ability afforded by coloured environments intensifies
the Moran effect because the environmental correlation
is directly transferred to fluctuations in population
equilibria. Although this result holds for any pair of
populations subject to the stationary constraint, the
quantitative increase in synchrony can vary largely in
parameter space; as b nears the boundary conditions for
stationarity the return tendency of the population
becomes very weak. This severely limits the popula-
tion’s ability to track environmental conditions and its
potential to correlate with other non-identical popula-
tions (Fig. 4; Ripa and Ives 2003, Hugueny 2006).

Thus, when one population in a pair has a very weak
return tendency, coloured noise has a reduced impact
on the Moran effect.

Non-linear population dynamics

A similar but non-linear analogue to the above model
(Eq. 4) is the discrete Ricker model. For two popula-
tions, i�1, 2, and including environmental noise,
population abundance is calculated as (Greenman and
Benton 2001)

Yi;t�1�Yi;t�e(ai�Yi;t�ji;t) (5)

where ai is the intrinsic rate of increase. The dynamic
behaviour of this model varies with the parameter a,
transitioning from a monotonic approach to equili-
brium (aB1), to damped oscillations (aB2), to
unstable cycles (aB2.69), and eventually to chaos in

Fig. 4. The impact of coloured noise on the synchrony of
linear population dynamics. The proportionality constant
K�rY/rj is shown for a range of difference in density
dependence (D) and environmental spectral exponents (g).
Population dynamics are governed by a first-order auto-
regressive model (Eq. 3) where b1��0.5, b2�b1�D, and
a1,2�0 (although the choice of a has no bearing on the
results). When D�1.5 the dynamics of Y2 are non-stationary.
In the white noise environment (g�0) the response of K to
the difference in density dependence reduces to the closed-
form solution K�[(1�b1)

2(1�b1)
2]1=2(1�b1b2)

�1

(modified from Royama 2005, Hugueny 2006). K was
calculated at each intersection of the grid lines from 100
independent replicate simulations of Eq. 4 with mj�0 and
sj�0.1. Initial Y values were chosen randomly between 0
and 1. The model was iterated for 1000 time-steps but only
the latter 500 time-steps were used to estimate rY.
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the absence of any environmental noise. It is rather
obvious from the model’s formulation that changes in
the environmental condition ji,t have an effect that is
equivalent to changing a, thus, environmental fluctua-
tions can induce short-term changes in the dynamic
behaviour of the model. Increasing the standard
deviation of environmental noise sj increases the
potential for the equilibrium to cross these bifurcation
thresholds as a consequence of environmental condi-
tions. Since two populations whose environments are
correlated (but not identical) may, at any time t, be
subject to different underlying dynamics (e.g. cycles vs
chaos), the spatial correlation between populations
tends to be well below that of their environments �

even for populations with identical density dependences
(Greenman and Benton 2001). Increasing the standard
deviation of environmental noise exacerbates this
difference (Greenman and Benton 2001) and the lack
of a consistent ratio between population and environ-
mental correlation precludes use of the proportionality
constant K to depict the results (as in the linear model).

As in the linear model, coloured environments
improve the synchrony between Y1 and Y2 when
dynamics are spatially heterogeneous (Fig. 5), albeit
for only a subset of parameter space and subject to the
underlying dynamics of the model. In Fig. 5a and 5b,
the dynamics of one population are fixed in the stable
parameter regime while those of the second population

Fig. 5. The impact of coloured noise on the synchrony of non-linear population dynamics. The cross correlation of population
dynamics rY is shown for a range of difference in density dependence (D) and environmental spectral exponents (g) given rj�
1.0, sj�0.1 (a) and (c) rj�0.5, sj�0.2 (b) and (d). Population dynamics are governed by a Ricker model (Eq. 4) where
a1�0.5, and a2�a1�D. The intersecting gray planes correspond to values of D at which the dynamics of Y2 cross bifurcation
thresholds. rY was estimated at each intersection of the grid lines from 100 independent replicate simulations of Eq. 5. Initial Y
values were chosen randomly between 0 and 1 [but in panels (c) and (d), Y1(0)�Y2(0)]. The model was iterated for 1000 time-
steps but only the latter 500 time-steps were used to estimate rY.
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are varied (across stable and unstable parameter space).
When both populations are in the stable parameter
regime (Fig. 5a-b) the results mimic those of the linear
model (Fig. 4); for spatially heterogeneous population
dynamics, coloured environmental noise intensifies
population synchrony. However, this outcome is
limited to the fraction of parameter space where both
populations are well bounded from unstable dynamics.
The synchronizing potential of coloured noise breaks
down quickly once the density dependence difference
(D) reaches a critical threshold approximately 2sj
below the bifurcation from damped oscillations to
unstable cycles (Fig. 5; cf. panels a and b which have
a different sj). Beyond this threshold, improved
environmental tracking no longer benefits population
synchrony as the underlying dynamic of Y2 is, with
increasing frequency, governed by a qualitatively dif-
ferent equilibrium behaviour. When the environmental
correlation is reduced and the distribution of fluctua-
tions is increased (Fig. 5b), the population correlation
becomes increasingly variable, however, the effect of
environmental colour is still visible and its mode of
influence the same.

For the non-linear model (Eq. 5), it is also
noteworthy to examine the impact of coloured noise
when one population is fixed in the unstable (cyclic)
parameter regime while the second is varied (Fig. 5c-d).
As in Fig. 5a and Fig. 5b, when the two populations are
governed by different equilibrium behaviours, environ-
mental colour offers no improvement in population
synchrony. When the intrinsic dynamics of both
populations are cyclic, there is an additional barrier to
synchrony; frequent switches occur between states
where fluctuations are exactly in-phase (synchronized)
or exactly out-of-phase (Greenman and Benton 2001).
Even when environments are identical, certain initial
conditions can generate perfectly out-of-phase popula-
tion dynamics. To control for this, the initial densities
of the two populations are made identical in Fig. 5c and
5d, ensuring that populations remain in the ‘in-phase’
state when environments are perfectly correlated. Under
this constraint, environmental colour improves popula-
tion synchrony over a small range of heterogeneous
dynamics (Fig. 5c); however, when the environmental
correlation is moderate (rj�0.5) and the size of the
noise distribution is increased, mixing of the in- and
out-of-phase states supersedes any impact that colour
has on population synchrony (Fig. 5d).

Discussion

In both linear and non-linear models, coloured envir-
onments can generate a substantial increase in popula-
tion synchrony over white environments when
population dynamics are spatially heterogeneous. For

the linear population model investigated, synchrony
increases in coloured environments when dynamics are
spatially heterogeneous (when populations are identical
Moran’s theorem is always upheld). Strongly reddened
environmental noise (i.e. g:2) overrides nearly all
differences in density dependences and maintains the
population correlation very near to the environmental
correlation. Only when one population has a very weak
return tendency does coloured noise have little impact
upon population synchrony. For the nonlinear (Ricker)
model explored, population synchrony increases in
coloured environments when the underlying dynamics
of the two populations are both stable. For a pair of
cyclic populations, coloured noise can improve syn-
chrony provided that the environmental correlation is
high and initial population densities favour in-phase
oscillations. Coloured noise offers no benefit to
population synchrony when the two populations are
governed by different qualitative dynamics. Given the
increase in population synchrony offered by coloured
noise for linear � and a subset of nonlinear dynamics,
the Moran effect may be a far more significant driver of
synchrony than is currently believed.

Theory predicts that ‘tracking’, the association
between population fluctuations and their stochastic
equilibria, should be improved in reddened environ-
ments because environmental fluctuations are shifted to
scales at which populations can better respond (Rough-
garden 1975, May 1976). This phenomenon has been
confirmed in laboratory microcosms (Petchey 2000,
Laakso et al. 2003), albeit by demonstrating an
increased correlation between population and environ-
mental (rather than equilibrium) fluctuations in co-
loured environments. While one must assume a
monotonic relationship between environmental and
equilibrium fluctuations in order to accept these
conclusions, the influence of tracking on population
synchrony is far less restrictive; improved tracking will
lead to increased synchrony between populations
provided only that their equilibria respond coherently
(not necessarily monotonically) to environmental fluc-
tuations. Here, experiments have outpaced theory.
Rotifer populations (of the same species) demonstrated
synchronous dynamics in experimental microcosms
when resource fluctuations followed a red noise regime
and lacked synchrony when resource fluctuations were
white (Fontaine and Gonzalez 2005). This result
occurred despite an identical environment across treat-
ments, demonstrating that populations had little success
tracking fluctuations in white environments.

Population synchrony is most often explained as a
consequence of the Moran effect and dispersal acting in
concert (Lande et al. 1999, Ranta et al. 1999, Kendall
et al. 2000, Ripa 2000). However, the combined effects
of dispersal and heterogeneity in density depend-
ence between patches have not yet been investigated
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(Hugueny 2006). Understanding how coloured envir-
onmental noise impacts population synchrony in this
setting is an avenue warranting further research. In rare
instances, the role of dispersal for synchrony can be
neglected and the potential importance of coloured
noise for synchrony can be surmised. Grenfell et al.
(1998) described the dynamics of feral sheep on two
nearby islands in the St. Kilda archipelago using a non-
linear model. They found that the observed level of
population synchrony (r�0.685) required what they
considered to be an unsupported degree of environ-
mental correlation (greater than r�0.9). Although
Koenig (2002) later pointed out that this degree of
environmental correlation was indeed plausible, given
evidence of similar high correlations at nearby sites, it
stands to reason that environmental colour could also
account for the observed level of synchrony while
requiring a lesser degree of environmental correlation.

Ecologists have recently recognized the need to reject
white noise as a model environment because many
environmental variables, including temperature, preci-
pitation, humidity, river height, and some seasonal
indices, have significantly reddened spectra (Koscielny-
Bunde et al. 1998, Cuddington and Yodzis 1999,
Pelletier 2002, Cyr and Cyr 2003, Vasseur and Yodzis
2004). Although there appears to be variation in the
extent of reddening across different time-scales, red
noise pervades environmental time series at temporal
scales ranging from a few days to hundreds of decades
(Pelletier 2002; cf. Koscielny-Bunde et al. 1998). This
suggests that noise colour should be equally important
for the synchrony of species whose dynamics are
influenced by short-term environmental conditions
(e.g. daily temperature or irradiance), and those which
are determined by long-term environmental conditions
(e.g. winter severity or annual rainfall). The obvious
and rather difficult task of linking the colour of
environmental noise to synchrony in natural popula-
tions lies in determining exactly how population
fluctuations are linked to environmental fluctuations;
understanding which environmental variables are im-
portant for a particular population at each stage of its
life cycle will ultimately lead to a better understanding
of how synchrony is achieved.

The method of ‘phase partnering’ described herein
provides a robust and simple framework for generating
coloured cross-correlated noises and it can be easily
extended to generate larger sets of noise vectors. This
property may be particularly useful for research into
metapopulation synchrony, synchronous traveling
waves (Ranta et al. 1999, 2006), and for food web
dynamics in varying environments � given that
different species may be sensitive to different, but
correlated, environmental variables. In the two patch

system described in this study, the method requires only
the specification of a single cross-correlation parameter.
However, in an n-patch system the number of cross-
correlations grows as n(n�1)/2 and not all of these
parameters can be freely specified, rather they are
subject to the general constraints of correlation ma-
trices. For example, in a set of three patches (x, y, and z)
each cannot be perfectly negatively correlated to the
other two; if rxy and rxz are specified as �1, ryz is by
consequence equal to �1. Weaker constraints on this
‘consequential correlation’ ryz exist when the specified
correlations are intermediate. Applying the method
described herein to a 3-patch (or n-patch) system would
require only a modification of the ‘coin toss’ procedure
outlined in the methods; by specifying rxy and rxz, and
by correlating the sequence of ‘coin tosses’ used to
define their phase shifts ryz can be varied across the
constrained range of correlations. Furthermore,
although the examples shown here are limited to the
cases where the spectral exponent g does not vary
among local environments, this is not a requirement of
the method or of nature (albeit heterogeneous spectral
exponents impose further restrictions on the correlation
between patches). Coastal and continental terrestrial
habitats are known to possess quite different spectral
exponents g (Pelletier 2002, Vasseur and Yodzis 2004),
and for aquatic environments, the spectral exponent can
be closely related to the size of the water body (Cyr and
Cyr 2003). Further research into the impact of varied
patch arrangements and dispersal on population syn-
chrony in coloured environments will supplement our
understanding of how synchrony is achieved across
large spatial scales and environmental gradients.
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Appendix 1.

Derivation of the necessary phase-shift operator d

Since the phase shift operator d is a constant applied to
the reference phase u1 at every frequency f in Eq. 1, the
desired cross correlation rj is applied equally to every
frequency contributing to Eq. 1. Therefore, it is
sufficient to derive the relationship between rj and d
for any single frequency on the interval 0Bf5n/2.

The time series of x1 and x2 represent the dynamics
of j1 and j2 at a single frequency f and are given by:

x1;t� sin(2pft=n)
x2;t� sin(2pft=n�d) (A1)

Provided that n is reasonably large relative to f,
/x1�/x2�0 and

sx1
�

�
1

n

Xn

t�1

sin2(2pft=n)

�1=2

(A2)

Given that summation of sin2 can be done in closed
form by

Xn

t�0

sin2(tc)�
�

1�2n�
sin[c(1 � 2n)]

sinc

�,
4 (A3)

(Weisstein 2006), Eq. A2 can be written

sx1
�

�
1

4n

�
1�2n�

sin[2pf (1 � 2n)=n]

sin[(2pf=n)]

�	1=2

Provided that n is large sx1
can be approximated by

taking the limit as n0�:

limsx1

n0�

�
�

1

4

�
1

n
�2�

sin[2pf (1 � 2n)=n]

nsin(2pf=n)

�	1=2

�1=
ffiffiffi
2

p

It can be easily shown using the same logic that

/sx2
0 1=

ffiffiffi
2

p
for large n. Given Eq. A1 and A5 it

follows that the expression for the cross-correlation of
x1 and x2, given sufficiently large n is:

rx�

1

n

Xn

t�1

[sin(2pft=n)sin(2pft=n � d)]

1=
ffiffiffi
2

p
� 1=

ffiffiffi
2

p (A6)

Using the Werner trigonometric product identity
(Jeffrey 2004) Eq. A6 reduces to:

rx�
2

n

Xn

t�1

�
cos(�d) � cos(4pft=n � d)

2

�

�cos(�d)�
1

n

Xn

t�1

cos(4pft=n�d) (A7a; b)

For sufficiently large n the second term of Eq. A7b00
and it follows that the necessary phase shift to generate a
correlation rx between two sinusoidal time series is

d�cos�1(rx) (A8)

(A5)

(A4)
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