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3.1 ABSTRACT

May (1976) suggested that populations are unlikely to be influenced by environmen-
tal fluctuations that occur more frequently than the reciprocal of their characteristic
response time (1/tr = r ). Allometric relationships, which govern the body-size-
dependence of many biological and ecological phenomena, can be used to predict
this characteristic response time for a wide range of populations. However, when
populations are embedded in a food web, the characteristic response time becomes
a property of the food web rather than of the embedded populations. This study
demonstrates that, for a range of pairings of body sizes in consumer-resource sys-
tems, the characteristic response time of the system can be entirely determined by
resource body size while for other pairings, it can be predominantly determined by
consumer body size. Using a recently developed framework to introduce tempera-
ture variability into consumer-resource models, this study evaluates the ability of
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the characteristic response time to predict the frequency at which populations are no
longer influenced by environmental fluctuations. In contrast to May’s (1976) results
for an isolated population, the results demonstrate that the reciprocal of the char-
acteristic response time often represents the frequency at which the variability of
resource populations is most sensitive to environmental perturbation, suggesting that
community processes must be considered when determining what scales of environ-
mental variability are important to populations.

Keywords: population, variability, response time, frequency, environmental vari-
ability.

3.2 INTRODUCTION

Allometric relationships describe the relatedness of the body size of an organism to
a wide variety of other characteristics occurring at both finer and broader scales of
interest (e.g. from physiological to ecological processes). These characteristics scale
as the bth power of body mass (m):

y = amb (3.1)

and there has been a great deal of literature devoted to the measurement of these
scaling exponents (b) and the intercepts of these relationships (a; see Peters 1983;
Calder 1996). Although there remains an ongoing debate about the ubiquitous appli-
cation of scaling exponents across different taxa and processes (see Kozlowski and
Konarzewski 2004), there are strong arguments to suggest that we should expect
scaling exponents to occur as rational multiples of the fraction 1/4 (West et al.
1997). Furthermore, those rates which are most important for the study of population
dynamics, including per capita population growth, reproduction, and metabolism, all
scale identically as m0.75 (or as m−0.25 per-unit-mass). The conservative nature of
this exponent within and between taxa makes allometric relationships useful as a tool
with which to provide general descriptions of the impact of body size on population
dynamics (e.g. Yodzis and Innes 1992).

For many models of population dynamics, the population growth rate r , represents
the reciprocal of a population’s “characteristic response time” (tr ); the fraction 1/r
describes the time required by a population to adjust to a perturbation introduced
by a singular environmental fluctuation (e.g. climate or anthropogenic disturbance).
May (1976) was first to note that environmental fluctuations occurring at frequen-
cies higher than 1/tr (or synonymously with a period smaller than tr ) should have
little impact on population dynamics, because such frequencies of fluctuation do not
provide adequate time for a population to adjust. Since populations are constantly
bombarded by environmental fluctuations, occurring over a large range of frequen-
cies, understanding which of these are of more or less consequence has an obvious
importance for determining how environmental variability impacts populations.



Assessing the Impact of Environmental Variability on Trophic Systems 43

One can arrive at May’s (1976) conclusion through the analysis of the logistic
equation

d N/dt = r N (1 − N/K ) (3.2)

which describes the rate of change of a population’s density as a function of its
density N , carrying capacity K , and intrinsic growth rate r . Under constant environ-
mental conditions, and provided that enough time has passed since initializing the
model, the population will be very near its equilibrium (N∗ = K ). However, if the
carrying capacity K is constantly varied, as if driven by some periodic fluctuation in
an environmental variable, the population will remain further from its equilibrium; it
will track the variation in the equilibrium and express a fluctuation in its own density
that is highly dependent upon the period of environmental fluctuation relative to its
characteristic response time. Consider the following example which is taken from
May (1976), where:

K (t) = K0 + K1 cos (2π t/τ) (3.3)

and population dynamics are modelled using Eq. 3.2 (obviously K1 < K0 in order
for the carrying capacity to remain positive). When the characteristic response time is
greater than the period of environmental fluctuation (tr � τ ) the population averages
across the environmental fluctuations. However, when tr � τ the population closely
tracks the environmental fluctuations (Figure 3.1). Given that similar dependencies
were found in models with stochastic fluctuations (e.g. Roughgarden 1975), May
(1976) concluded that populations will average over the high frequency components
of the environmental noise spectrum while tracking those at lower frequencies. The
transition between the two behaviours occurs at a frequency on the order of r (i.e.
when tr ≈ τ ). One way to visualize this is to vary the period of environmental
forcing (τ ) across a range of values and record the average distance between the
population and its equilibrium (Figure 3.2). When the period (τ ) is much larger than
tr this average distance is very small; when the period is only slightly larger than tr
(within an order of magnitude) the average distance grows substantially; and when
the period is equal to or greater than tr the average distance is at its maximum value.
Conversely the variability of the population (measured as the coefficient of variation:
CV = standard deviation/mean) is greatest when the period is much larger than tr
and least when the period is greater than tr (Figure 3.2).

The simple relationship between the characteristic response time of a population
tr and its growth rate r allows a simple determination of the allometry of response
time; since the rate of growth scales as r ∝ m−0.25, the response time must scale as
tr ∝ m0.25. Thus, populations comprised of smaller bodied individuals will have a
lower response time than those comprised of larger bodied individuals. Furthermore,
this relationship predicts that the frequency at which environmental fluctuations are
no longer influential should be lower for larger bodied organisms – a surety given
that variation at the per minute scale may be important for a population of single-
celled organisms but inconsequential for one comprised of large-bodied mammals.

Despite the ease with which this prediction might be tested there have been few
attempts at large-scale validation, possibly due to the wide variety of timescales that
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Figure 3.1. The equilibrium (solid line) and realized population density (dashed line) of the logistic
model with sinusoidal variation in the carrying capacity. (From May 1976.) The three panels show exam-
ples where the frequency of environmental forcing is greater than (a), equal to (b), and less than (c) the
characteristic response time.
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Figure 3.2. The relationship between the frequency of environmental forcing and the (a) average devi-
ation from equilibrium (Mean Squared Error) and (b) the coefficient of variation (CV) for the logistic
model with varying K (Eqs. 3.1 and 3.2). At low forcing frequencies the population density is usually
near its equilibrium (cf. Figure 3.1c) and thus the mean squared error is low, while at high-forcing fre-
quencies the population is usually far from equilibrium (cf. Figure 3.1a) resulting in a large (relative)
mean squared error. The trend in the CV is opposite that of the equilibrium deviation. The dashed vertical
line represents the frequency corresponding to 1/tr ; above this frequency environmental forcing has little
influence on population dynamics as evidenced by the near-zero slopes of the two curves in this region.

would be required. In perhaps the most comprehensive analysis of long-term ani-
mal population variability, Inchausti and Halley (2002) found that body size signifi-
cantly influenced the spectral exponent (a measure of the expression of high relative
to low frequency variability). But in contrast to theoretical predictions, they found
that populations of larger-bodied primary and secondary consumers expressed more
high (relative to low) frequency variation relative to their smaller-bodied counter-
parts (while herbivores behaved as predicted). While many factors may be respon-
sible for the discrepancy between the allometrically based prediction and natural
data, including differences in the environmental fluctuations which drive population
variability and adaptations which buffer populations against environmental fluctu-
ations, we cannot ignore the importance of ecological interactions in determining
the response of populations to environmental variability. While each population in
a food web has its own characteristic response time which is a function of its body
size and characteristic of its internal renewal process, community processes (e.g.
competition, predation) will ultimately determine a characteristic response time that
is representative of the entire food web and which may depend, to varying extents,
upon the body sizes and renewal processes of all the populations in the food web.

Through the analysis of a generalized allometric model for dynamic trophic
systems, and using a recently developed extension of this model to include
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temperature, this study investigates how body size mediates the characteristic
response times of small trophic communities to variability in the environment. In
the first section below, I derive the relationship between body size and characteristic
response time for a simple consumer-resource system using the Yodzis and Innes
(1992) bioenergetic-allometric framework for dynamic trophic systems. Following
this, I use numerical simulations to evaluate the utility of this measure to predict the
frequencies of environmental variability that are important for population variability.

3.3 THE ALLOMETRY OF CHARACTERISTIC RESPONSE TIME
IN CONSUMER-RESOURCE SYSTEMS

Yodzis and Innes (1992) pioneered the use of allometric relationships to provide log-
ical bounds on the parameters of trophodynamic models (dynamic models of feeding
relationships). For the simplest case, one consumer feeding upon one resource, they
showed that although the body sizes of both populations are important determinants
of the relative and total biomass in an ecological system, they do not influence the
qualitative stability of the system (e.g. they have no bearing on whether the system
exhibits stability, periodic oscillations, or chaos). Despite this, it has been shown
that the ratio of consumer to resource body size influences the strength of inter-
actions (Emmerson and Raffaelli 2004) and that theoretical food webs constructed
from empirically plausible consumer/resource pairs, exhibit a much higher degree
of stability than those with random interaction strengths (Williams and Martinez
2004; Brose and Berlow 2005). In addition to stability, body size is known to play
an important role in the structuring of food webs (Cohen et al. 1993; Williams and
Martinez 2000) and in their resultant dynamics (McCann and Hastings 1997; Law
and Morton 1996).

The Yodzis and Innes (1992) model is a bioenergetic version of the consumer-
resource system that was first proposed by Rosenzweig and MacArthur (1963). The
model describes the rates of change of resource (R) and consumer (C) biomass
(rather than individuals) per unit time, using the following pair of differential equa-
tions:

dR
dt

= r R
(

1 − R
K

)

− JC
(

R
R + R0

)

dC
dt

= C
[

−M + (1 − δ) J
(

R
R + R0

)]

.

(3.4)

Here, resource biomass increases in the absence of consumers according to the
logistic equation, which is governed by the rate of resource growth r and by the
resource-carrying capacity K . The consumer population ingests resources at a
rate governed by the type II functional response, where J is the maximum rate of
ingestion, R0 is the resource biomass required to realize an ingestion rate equal to
J/2 (half-saturation density), and δ defines the fraction of biomass that is eaten but
not assimilated. The consumer population loses biomass to metabolic processes at
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the rate M . This relatively simple model framework has three equilibria, only one
of which is stable for a given set of parameters, and it can produce a variety of
dynamical behaviours including stable nodes, foci, and oscillations (see Yodzis and
Innes 1992; Vasseur and McCann 2005).

Body size enters the model through allometric scaling functions for the three para-
meters which describe per-unit-time rates of change, namely r , J , and M. Yodzis and
Innes (1992) scaled these rates according to generally applicable power laws of the
form of Eq. (3.1), where:

r = fr ar m−0.25
R

(1 − δ)J = f J aJ m−0.25
C .

M = aM m−0.25
C

(3.5)

The parameters m R and mC represent the body sizes of resources and consumers
respectively and the allometric intercepts ar , aJ , and aM are empirically derived con-
stants for a “user-defined” species or set of species. Yodzis and Innes (1992) general-
ized these intercepts to the four metabolic classes defined by Robinson et al. (1983);
endotherms, ectothermic vertebrates, ectothermic invertebrates, and unicells). Since
the allometric intercepts used to represent resource growth and consumer ingestion
(ar and aJ ) are usually measured under physiologically limited conditions, the frac-
tional coefficients fr and f J can be used to impose ecologically limited conditions
(see Yodzis and Innes 1992 for more detail).

The characteristic response time of this system can be determined, as it is for
the logistic model of population growth, by calculating the eigenvalues (λi ) of the
system’s Jacobian matrix. Equilibrium stability requires that all the system’s eigen-
values be less than 0, but it is the most positive of the system’s eigenvalues that
determines the time required by the system to adjust to a change in environmental
conditions. Specifically, the characteristic response time tr is approximated by:

tr = −1/Re(λmax) (3.6)

(Pimm and Lawton 1977). The eigenvalues of the model Eq. (3.4) and the corre-
sponding response times are calculated for the model in Appendix 3A.

To visualize how body size influences the characteristic response time of the sys-
tem, it is useful to parameterize the model and plot tr across a range of consumer and
resource body sizes. Table 3.1 provides a parameter set indicative of the interaction
between a unicellular plant resource (e.g. algae) and a poikilothermic invertebrate
consumer (e.g. zooplankton). The model’s free parameters (R0 and K ) are chosen in
the parameter space where the equilibrium is stable and approximately equidistant
from the thresholds for system persistence and unstable dynamics (see Vasseur and
McCann 2005). Figure 3.3 shows the characteristic response time plotted against a
gradient of resource and consumer-body sizes.
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Table 3.1. Model parameter descriptions and values

Parameter Description Value (units) Source

Consumer-resource model
R0 Half-saturation density 60 kg · area−1

K Carrying capacity 10 kg · area−1

� Fraction of energy lost
during ingestion and
digestion

0.55 Yodzis and Innes (1992)

fr , f J Realized fraction of
maximum growth and
ingestion rates

1

Scaling function parameters
ar Allometric intercept1 0.386 kg · (kg · year) · kg0.25 Yodzis and Innes (1992) in

Vasseur and McCann (2005)
aJ Allometric intercept1 9.7 kg · (kg · year) · kg0.25

aM Allometric intercept1 0.51 kg · (kg · year) · kg0.25

Er Activation energy for
resource growth

0.467 eV Hansen et al. (1997) in
Vasseur and McCann (2005)

E J Activation energy for
consumer ingestion

0.772 eV

EM Activation energy for
consumer metabolism

0.652 eV

k Boltzmann’s constant 8.618e−5 eV·K−1

T Temperature varied (K)

Body sizes (four sets)
m R Resource body size (A) 1.0e − 13 kg

(B) 1.0e − 10 kg
(C) 1.0e − 13 kg
(D) 1.0e − 10 kg

mC Consumer body size (A) 1.0e − 8 kg
(B) 1.0e − 8 kg
(C) 1.0e − 5 kg
(D) 1.0e − 5 kg

1Allometric intercepts were measured at T0 equals 20◦C or 293 K.

There are a number of noteworthy properties that emerge from Figure 3.3. Firstly,
the surface representing the characteristic response time shows two distinct zones
which are separated by a vector of body-size combinations along which consumer
body size is six orders of magnitude larger than resource body size (mC/m R = 106).
This qualitative change in the system’s characteristic response-time surface arises
via changes in the nature of the system’s eigenvalues. For combinations where
mC/m R > 106 the system’s two eigenvalues are real and distinct, generating a
monotonic approach to equilibrium following perturbation. The dominant eigen-
value, and thus the characteristic response time, is strongly influenced by con-
sumer body size, and only weakly influenced by resource body size in this region.
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Figure 3.3. Characteristic response time surface of the body-size-dependent consumer-resource model
(Eq. 3.3). The surface displays two distinct regions corresponding to different qualitative behaviours of the
equilibria: when mC /m R < 106 the equilibrium is a focus and the response time is entirely determined by
resource body size; when mC/m R > 106 the equilibrium is a node and the response time is determined
by both resource and consumer body size. The four labelled points correspond to the four parameter sets
A through D used in the analyses in later sections.

For combinations where mC/m R < 106 the eigenvalues are a complex conjugate
pair, generating damped oscillations following perturbation. The real portion of
this conjugate pair, which is used to determine the characteristic response time,
is independent of consumer body size; it is determined only by the body size of
the resource, through its effect on the growth rate r; tr ∝ 1/r ∝ m R

0.25. Although
the characteristic response time of the system scales with resource body size in
the same manner demonstrated by the population logistic model, the addition of a
consumer to the system increases the characteristic response time by altering the
intercept of the scaling function (see Appendix 3A). Pimm and Lawton (1977) were
first to show that the response time of food webs quickly increases with the addition
of each new trophic level to the system. This led them to the supposition that the
maximum trophic level in ecological systems was limited by population dynamics
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rather than by the flow of energy. However, recent research has shown that decreas-
ing the predator-prey body-size ratio at higher trophic levels can slow this increase,
allowing longer chains to remain feasible (Jonsson and Ebenman 1998).

The result of this exercise leads to the rather obvious question: What body-size
ratio typifies the consumer-resource interaction in natural systems? Cohen et al.
(1993) provided a summary of predator and prey body sizes for 832 predator pairs
from over 70 different ecological communities. Although they explain much of the
variability in body-size ratios with habitat types and metabolic strategies they gen-
erally show that this ratio generally falls between 101.5 and 103. In the extensive
data set compiled by Brose et al. (2005), the average ratio for 16,807 consumer-
resource pairs is 101.74±3.06, including data from all habitats and from a variety of
consumer-resource pairs (including host-parasitoid). In Figure 3.3 these ranges fall
in the zone where the response time is entirely determined by resource body size
and the return to equilibrium is typified by damped oscillations. However, it is worth
noting that Figure 3.3 is parameterized to represent the interaction between algae
and zooplankton and that alternative parameters will alter the location (but not the
existence) of the boundary delimiting the two zones in Figure 3.3. Gaedke (1992)
determined the size spectrum of the entire plankton community in Lake Constance,
where plankton range from 2−6 to 214 pg C and herbivorous zooplankton from 213

to 226 pg C. Obviously not all consumer-resource pairs falling within these ranges
are valid; however, the ranges do provide conservative limits on the body-size ratios
that may be possible (10−0.3 to 109.6). The median of this range (104.9) falls near the
boundary in Figure 3.3 suggesting that both resource and consumer body sizes may
influence the response times in natural systems.

Despite the frequency with which eigenvalues have, and continue to be used to
infer the stability of an ecological system, they are an asymptotically biased measure
whose error grows quickly as the system is moved further from its equilibrium. For
large enough perturbations transient dynamics can be extremely important and
endure for times on the order of the characteristic response time (Neubert and
Caswell 1997). Although Yodzis and Innes (1992) suggested that the asymptotic
approach to equilibrium appeared to be globally valid for the class of consumer-
resource models described here, the characteristic response time may not adequately
describe the response of the system to continued forcing at certain frequencies.
For example, a perturbed system that has not returned to equilibrium before the
subsequent perturbation occurs, may currently occupy a state that could excite or
dampen the system’s response to the subsequent perturbation. In the following
sections I evaluate the ability of the characteristic response time to determine which
frequencies of environmental forcing will influence population dynamics. However,
before dealing with this issue, I describe some important and often overlooked
assumptions which arise when considering exactly how the environment influences
populations.
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3.4 PARAMETRIC AND DEMOGRAPHIC PERTURBATIONS

Much of the theory surrounding the use of eigenvalues as predictors for the response
of perturbed populations makes the assumption that perturbations are demographic
in nature; that is, they reflect events which alter the density of the population without
influencing its equilibrium, or the propensity of the population to return to its equi-
librium. Such perturbations can arise from random variation among individuals in a
population (e.g. quality or reproductive potential), by mass mortality events caused
by extreme (rare) climatic conditions, or anthropogenic impacts. These perturbations
are not directly akin to those imposed by “normal” (non-lethal) variation in envi-
ronmental conditions, which is more likely to influence the parameters governing
population dynamics than the population densities directly. For example the pro-
duction, ingestion, and metabolic rates, which describe population dynamics in the
Yodzis and Innes (1992) model are known to depend on temperature (Brown et al.
2004), and assumedly a variety of other environmental factors.

Parametric perturbations, through their effects on the parameters governing popu-
lation dynamics, can indirectly influence population densities by altering the equi-
librium density of the population. Recall the example presented in the introduction,
where May (1976) varied the carrying capacity (K ) of the logistic model through
time. This perturbation influenced the population dynamics indirectly by varying
the model’s equilibrium; with the outcome depending upon the frequency of varia-
tion in K . However, there is an additional complication to consider when perturb-
ing parameters – in addition to the equilibrium, the response time may itself vary
with environmental conditions. Consider the dynamics of the logistic model under a
new model of environmental variation which influences both r and K . Such varia-
tion will alter the equilibrium population density (K ) and the characteristic response
time (recall that tr = 1/r ) in concert. If the environmentally imposed variation in r
and K is positively correlated then we expect the system to reach equilibrium faster
at higher equilibrium densities. This implies that a unit increase in some environ-
mental character (e.g. temperature, irradiance, pH) may have altogether different
effects on populations than a unit decrease in the same character. Upon inspec-
tion of the equilibrium and eigenvalue equations for the Yodzis and Innes (1992)
model of consumer-resource interactions (Appendix 3A) it is clear that r , K , and a
number of other model parameters alter both the equilibrium and the eigenvalues of
the system. This suggests that even simple model forcing (e.g. forcing of only one
parameter) may produce complicated responses to perturbations, which are not pre-
dicted by determination of the eigenvalues, (and subsequently the response times)
alone. Below I introduce a recent modification to the Yodzis and Innes (1992) model
framework which incorporates temperature as a model parameter. Using this model
I evaluate the utility of the characteristic response time to predict which frequencies
of environmental forcing are important to populations.
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3.5 CAN RESPONSES TIMES HELP DETERMINE HOW CONSUMERS
AND RESOURCES VARY IN FLUCTUATING ENVIRONMENTS?

Any attempt to address the above question using theoretical models must make
assumptions about how and where environmental variability enters the trophody-
namic model. However, the risk of making such assumptions can be minimized by
employing empirical relationships, which describe the dependence of model para-
meters, or their surrogates, on environmental conditions. Recently, the importance of
temperature for a variety of biological and ecological processes including metabolic
rate (Gillooly et al. 2001), developmental rate (Gillooly et al. 2002), and population
growth rate (Savage et al. 2004), have been highlighted (see Brown et al. 2004 for a
review). Already, these relationships have been used in theoretical models to predict
temperature-induced changes in population ranges (Humphries et al. 2002), activ-
ity levels, (Humphries and Umbanhowar, Chapter 4 this volume), and energy usage
(Ernest et al. 2003); and to describe gradients of global biodiversity (Allen et al.
2002) making temperature an obvious choice to address the issue at hand.

Vasseur and McCann (2005) merged the trophodynamic-allometric framework of
Yodzis and Innes (1992) with the equations describing the temperature dependence
of biological processes (e.g. Brown et al. 2004) to generate a trophic model that is
capable of responding to environmental variability (temperature) in a mechanistic
fashion. In this model, body size and temperature enter the model in the three rates
r, J, and M as functions of the −1/4 power of resource or consumer body size
(m R , mC ) and as an exponential function of temperature (see Vasseur and McCann
2005):

r = ar (T0)m−0.25
R eEr (T −T0)/kT T0

(1 − δ)J = aJ (T0)m−0.25
C eE J (T −T0)/kT T0

M = aM (T0)m−0.25
C eEM (T −T0)/kT T0

(3.7)

where ar , aJ ,and aM are the allometric intercepts of the body-size scaling relation-
ships measured at the temperature T0. The Ei are empirically estimated activation
energies, k is Boltzmann’s constant, and T is temperature in Kelvin. These equations
follow the temperature-scaling laws developed to describe enzyme kinetics – which
ultimately exert their influence upon population-level processes and are therefore
suitable for biological and ecological models.

The dynamics of this model in response to long-term changes in temperature can
be determined by assessing the equilibrium response to temperature. Vasseur and
McCann (2005) showed that this response is governed by the differences E J − EM
and Er − EM , which control the energy requirements for the consumer and the
energy budget for the system respectively. Based upon empirical estimates of the
Ei , they suggested that the majority of pairings of consumers and resources would
result in reduced equilibrium densities of both when the environmental temperature
increased. I employ the same set of parameters used in Vasseur and McCann (2005)
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to describe the temperature-dependence of the interaction between unicellular algae
and herbivorous zooplankton (Table 3.1) using four combinations of body sizes
which fall within the range reported by Gaedke (1992) for phytoplankton and her-
bivorous zooplankton in Lake Constance (see Table 3.1 for parameter values).

The model provides a useful tool with which to test the influence of body size and
environmental variability on the stability of consumer and resource dynamics and in
addition, how the frequency of environmental forcing may influence these results.
Figure 3.2 shows, using May’s example for the logistic model, how the frequency
of forcing influences the deviation of a population from its equilibrium values in
relation to the response time. To obtain the same figures for the consumer-resource
model above (Eqs. 3.4 and 3.7), the model was integrated through time, but perturbed
by changes in the environmental temperature at regular intervals – to generate a
specific frequency of forcing ( f ). Temperatures are drawn from a random normal
distribution with a mean value of 20◦C and a standard deviation of 5. The coefficient
of variation (CV) of consumers and resources and their deviation from equilibrium
conditions, were determined within each model iteration (which lasted 32,768 days)
and averaged across 200 replicates at each of the frequencies tested.

For each of the four body-size combinations (Figures 3.4–3.7) it is apparent that
the response of the system to different frequencies of forcing matches to some extent,
the curve plotted in Figure 3.2; at low frequencies the dynamics are “at equilibrium”,
at intermediate frequencies the deviation from equilibrium is increasing, and at high
frequencies the deviation from equilibrium is constant or decreasing. To test if May’s
(1976) prediction for isolated populations holds for consumer-resource pairs, the

Figure 3.4. The observed relationship between the frequency of forcing and (a) the average deviation
from equilibrium for resources (solid) and consumers (dotted), and (b) the CV. The vertical dotted line rep-
resents the frequency corresponding to 1/tr . The parameters used in this simulation are listed in Table 3.1
and body sizes are those of set A.
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Figure 3.5. As in Figure 3.4 except body sizes are those of parameter set B.

Figure 3.6. As in Figure 3.4 except body sizes are those of parameter set C.

frequency corresponding to 1/tr (evaluated at 20◦C) is plotted in Figures 3.3– 3.6.
For all parameter sets this frequency lies within the zone where the deviation from
equilibrium is increasing, suggesting that threshold frequency 1/tr underestimates
the importance of higher frequencies. However, there are distinct differences in the
variability of the resource populations among the four body-size scenarios at, and
nearby this frequency; 1/tr is nearest to frequencies which produce the maximum
equilibrium deviation for parameter sets A and D, but far below those for parameter
sets B and C. Table 3.2 provides a summary of these results.
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Figure 3.7. As in Figure 3.4 except body sizes are those of parameter set D.

Table 3.2. Characteristic dynamics of the four parameter sets A–D

Parameter
set

Response rate
(1/tr ) at 20◦C

Largest deviation from equilibrium Largest value of
resource CV

Resource Consumer

A 0.280 day−1 0.20 @ f = 0.33
day−1

0.62 @ f = 1.0
day−1

0.280 @ f = 0.25
day−1

B 0.050 day−1 0.12 @ f = 0.13
day−1

0.17 @ f = 0.20
day−1

0.229@ f = 0.11
day−1

C 0.059 day−1 0.46 @ f = 0.25
day−1

3.28 @ f = 0.33
day−1

0.317 @ f = 0.14
day−1

D 0.050 day−1 0.20 @ f = 0.10
day−1

0.63 @ f = 0.13
day−1

0.276 @ f = 0.05
day−1

For the parameter sets A and D, the response rate 1/tr denotes the (approximate)
frequency at which the CV of resources is greatest and for parameter sets B and C,
the peak in resource CV occurs at forcing frequencies 2–2.5 times larger than the
response rate. These results are in direct contrast to those from the single popula-
tion model – where the response rate 1/tr denoted a frequency of forcing at and
above which the population CV was relatively low (cf. Figure 3.2). The trend of
having larger resource CVs at high-forcing frequencies is likely due to the ability of
resources to overcompensate for changes in their equilibrium, a character that is not
possible in the continuous-time logistic model. If we compare the magnitude of the
equilibrium deviations and CVs among the four parameter sets, it is apparent that
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Figure 3.8. Response time of the model as a function of environmental temperature for each of the four
parameter sets A through D. The curves for A, C, and D have a change in their slope corresponding to
the temperature at which the system transitions from a node (at lower temperatures) to a focus (at higher
temperatures).

lower absolute variability is expressed by systems whose body-size ratios are nearer
to 1 (e.g. the CV for set B < A ≈ D < C).

Despite the similar response times for parameter sets B, C, and D plotted in
Figure 3.1, there are evident differences in the way that these systems respond to
fluctuations in environmental conditions, which arise from the underlying sensitiv-
ities of the systems’ eigenvalues. As temperature varies over time, the equilibrium
changes in concert with the response times of the system; at low temperatures equi-
librium densities are relatively high but response times are relatively low. Figure 3.8
shows the relationship between response time and temperature for each of the four
parameter sets. Over certain temperature ranges the scaling relationship between tr
and resource body size (tr ∝ m R

0.25) is apparent in each curve; however, for sets A,
C, and D there is a transition corresponding to a change in the fundamental proper-
ties of the equilibrium. One can envision temperature as effectively altering the body
sizes of predators and prey; at low temperatures, response times are more likely to be
strongly influenced by temperature and determined by both resource and consumer
body size.

3.6 SUMMARY AND DISCUSSION

Characteristic response times have been cited as an important measure of the
resilience of populations and trophic systems to perturbations in external conditions
and given that external conditions vary continuously in most natural systems they are
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an important potential predictor of the level of variability these systems may express.
For single populations, characteristic response times determine which frequencies of
environmental variability will cause populations to themselves vary – depending on
the body size of individuals in the population. Extending these results to consumer-
resource models shows that when mC/m R < 106 response time is determined only
by resource body size, and when mC/m R > 106 response time is mainly influenced
by consumer body size (Figure 3.1). However, evaluating these results by forcing
the rate parameters of the model via the Boltzmann factor shows that the character-
istic response time should not be used to predict which frequencies of forcing will
influence population dynamics. In fact, forcing at the frequency corresponding to
1/tr often produces the largest variability one of the populations (resources).

Despite the results shown here, there are a myriad of other factors that can
influence population dynamics at fixed temporal scales, or over a range of tempo-
ral scales. In practice, any population or food web will experience environmental
fluctuations possessing a multitude of frequency components rather than a single
frequency as I have modelled here in the latter section. While a few distinct fre-
quencies may be responsible for the majority of environmental variation (e.g. ENSO
cycles [see McPhaden, Chapter 1, this volume], seasonal cycles, lunar cycles, and
diel cycles) many environmental variables are known to possess a distinct negative-
scaling relationship between the frequency and magnitude of fluctuations ( f −β ;
Halley 1996; Vasseur and Yodzis 2004). This dictates that high-frequency noise has
a lesser magnitude than low-frequency noise, an aspect that may lead to a reduction
in resource variability at high frequencies.

Adaptive responses are also extremely important for determining the impact of
environmental variability. For instance active thermoregulatory behaviours such as
torpor can allow an individual to buffer environmental variability at a specific tem-
poral scale. Humphries and Umbanhowar (Chaper 4, this volume) demonstrate that
many populations traits can, under certain conditions, become decoupled from the
environment through behavioural adaptations, and that this decoupling may be criti-
cal for the success of endotherms in cold climates.

Most studies examining the dynamical impacts of perturbations have remained
isolated to examples involving single perturbations, in hope of being able to extrapo-
late their results to the more complicated cases where perturbations are not singular,
but continual occurrences (Neubert and Caswell 1997). While this study provides
only an example of how a consumer-resource system might respond to continually
imposed environmental variability, it presents a technique whereby forcing frequen-
cies, which excite the system can be isolated, and compared to linear measures of
the forcing response (such as response time). Although I suggested earlier that com-
munities provide a better “base” for the study of ecological variability, since popu-
lations rarely exist in isolation of others, they suffer the same criticism as they are
most often embedded in larger food webs. While communities do provide a basis
with which to begin understanding the importance of interspecific interactions for
ecological variability, extrapolating these results to entire food webs can be highly
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inaccurate due to the existence of non-linear feedback mechanisms. We can project
that the response times of food webs may scale predominantly with the body size of
resources and that the period of forcing at which the system is most sensitive may
be nearly equivalent to the response time, however, these projections are no substi-
tute for more detailed theoretical and empirical experiments. Ultimately, ecologists
need to derive a better understanding of how continual, press, and point perturbations
interact to determine how ecosystems respond to environmental variability.
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APPENDIX 3A THE CHARACTERISTIC RESPONSE TIME OF THE
TROPHODYNAMIC-ALLOMETRIC MODEL.

The Yodzis and Innes (1992) allometric model of consumer-resource dynamics is
defined as:

dR
dt

= r R
(

1 − R
K

)

− JC
(

R
R + R0

)

dC
dt

= C
[

−M + (1 − δ) J
(

R
R + R0

)] (3A.1)
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where the model rates (per-unit-time parameters) are scaled with resource and con-
sumer body size as follows:

r = fr ar m−0.25
R

(1 − δ) J = f J aJ m−0.25
C

M = aM m−0.25
C

(3A.2)

This model has three equilibrium points, two of which are trivial [(Re, Ce) =
(0, 0), (K, 0)] and the third which is defined as:

Re = R0

(1 − δ)J/M − 1

Ce =
(

1 − Re

K

)(
(1 − δ)r

M

)

Re

. (3A.3)

The Jacobian matrix defines the matrix of partial derivatives of Eq. (3A.1) and is
defined:

J =
[

∂ R
∂ R

∂ R
∂C

∂C
∂ R

∂C
∂C

]

. (3A.4)

Solving for the eigenvalues of J , evaluated at Eq. (3A.3) gives:

λ1,2 =

∂ R
∂ R

∣
∣
∣
∣
EqA3

±
√
√
√
√

(
∂ R
∂ R

∣
∣
∣
∣
EqA3

)2

− 4

(

− ∂ R
∂C

∣
∣
∣
∣
EqA3

∂C
∂ R

∣
∣
∣
∣
EqA3

)

2
. (3A.5)

It has been shown elsewhere (Vasseur and McCann 2005) that both λ1,2 < 0 when
∂ R
∂ R

∣
∣
Eq3

< 0 which is true when R0/K < (1−δ)J/M −1. Thus, the model is always
stable when the consumer’s perceived resource abundance (K/R0) is sufficiently
large enough to allow the consumer’s realized ingestion rate to exceed its metabolic
rate.

In the range of stable parameter space the two eigenvalues can be real and distinct
(corresponding to an equilibrium node) or complex conjugates (corresponding to an
equilibrium focus). In the latter case a noteworthy size invariance emerges in the
characteristic response time, where tr = −1/Reλmax. Here

Reλmax = 1
2

∂ R
∂ R

∣
∣
∣
∣
EqA3

= r
2

[

1 − 2Re

K
−
(

(1 − δ)J
M

)(

1 − Re

K

)(
Re R0

(Re + R0)
2

)]

(3A.6)

is invariant to changes in consumer body size (mC ) since both (1 − δ)J and M ∝
mC

−0.25. When the equilibrium is a node (two real distinct eigenvalues) λmax is a
function of both resource and consumer body sizes. The transition from focus to
node is shown along a gradient of resource and consumer body sizes for a specific
parameter set in Figure 3.2 and the algebraic form of this function can be found in
Yodzis and Innes (1992).




