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THE COLOR OF ENVIRONMENTAL NOISE

DAVID A. VASSEUR1 AND PETER YODZIS
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Abstract. Biological populations are strongly influenced by the random variation in
their environment. The spectrum of frequencies in noise is particularly important to dy-
namics and persistence. Here we present an analysis of the variance spectra of a wide
variety of long-term time series of environmental variables. Spectra were well approximated
by the inverse power law 1/f b within the appropriate range of frequencies f; however, the
majority of spectra were ‘‘flattened’’ at low frequencies. With some qualification we found
the spectral exponents (b) to corroborate an earlier suggestion that terrestrial noise tends
to be ‘‘white’’ (b , 0.5), while marine environments tend to be ‘‘red’’ (b ø 1) or ‘‘brown’’
(b ø 2). As well, we found a tendency for whiter noise in temperate latitudes than in either
high or low latitudes. These results have wide-ranging consequences for ecosystem fragility
and species conservation.
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INTRODUCTION

Biological populations exist in a noisy world of ran-
dom variation in the environmental parameters that af-
fect their dynamics. For some populations, this natural
variability merely superimposes noise on the time se-
ries of population abundance (exclusive of noise intro-
duced by measurement error). But there is also a class
of systems for which external forcing by environmental
noise alters the qualitative nature of the dynamics. The
best studied case is when environmental fluctuations
are so large or the population is so small that the pop-
ulation is driven to local extinction (e.g., Ripa and
Lundberg 1996, Johst and Wissel 1997). More recently,
awareness has been growing, particularly but not ex-
clusively concerning marine systems, that environ-
mental variability may cause fundamental alterations
in the dynamics and structure of communities, such as
changes in the dominant taxa present (NRC 1996,
Holmgren et al. 2001). In order to model these phe-
nomena, we must start by modeling the noise in en-
vironmental variables.

An important characteristic of environmental noise
is its spectrum, which describes the variance as a sum
of sinusoidal waves of different frequencies. For many
years, theoretical work on environmental noise uncrit-
ically assumed a white spectrum, partly for want of a
more general model of noise, partly for want of guid-
ance from data. In order to theoretically study the phe-
nomena mentioned in the preceding paragraph, it is
crucial that we move beyond white noise to something
more realistic. This paper is a survey and analysis of
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time series data for a wide variety of environmental
variables, which confirms and sharpens the emerging
paradigm of ‘‘colored noise.’’

In white noise, the variance is the same at all fre-
quencies. This is by far the most thoroughly studied
and applied form of noise. The reason for this is that
it is a simple and easily articulated model for noise.
However, it is not necessarily a good description of the
time series of environmental variables in nature. We
need to move beyond the assumption of white noise in
modeling environmental variability, but in order to do
so, we need another relatively simple and easily artic-
ulated hypothesis.

Building on work scattered in the literature, with
some of it his own, Mandelbrot (1983) suggested that
the family of noise forms whose variance scales with
frequency according to an inverse power law, 1/f b, may
describe many instances of noise in nature. In this set-
ting, white noise is a special case, b 5 0, in which
there is an equal mix of cyclic components at all fre-
quencies in the variance, while ‘‘colored’’ noises are
dominated by frequencies in a certain range. Specifi-
cally, red noise (b 5 1) is dominated by low-frequency
(or long-period) cycles and has residuals that are au-
tocorrelated. In the time domain, this produces an in-
creased probability of having long runs of above (or
below) average conditions (Fig. 1). More intense slopes
have been termed brown (b 5 2), which is by no co-
incidence, the color of noise generated by a Brownian
process. The family of 1/f b noise models seems, with
a caveat discussed later, to describe well the fluctua-
tions of a wide range of environmental variables.

Colored noise was brought to the attention of ecol-
ogists by Steele (1985), who suggested that terrestrial
noise should be white, while marine noise should be
brown, based upon a few empirical records and simple
forcing models. Based on this, noise color has been
examined in a wide variety of climatological and hy-
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FIG. 1. Residual time series for (a) a white noise model and (c) a red noise model (generated using an AR[1] process),
and (b, d) their respective power spectra. The mean and variance for the data are identical. In panel (b), the contribution to
the variance is equal across all frequencies (b 5 0; white noise), while in panel (d), the variance is dominated by low-
frequency periodic components (b 5 1; red noise). Straight lines represent the 1/f b approximation.

drological variables (e.g., Pelletier and Turcotte 1997,
Cyr and Cyr 2003). Recent theoretical work has shown
that population dynamics, particularly population per-
sistence and extinction, are influenced by noise color
(Steele and Henderson 1984, Ripa et al. 1998), but that
the effect of noise can be masked by periodic or chaotic
dynamics (Ranta et al. 2000).

Lawton (1988) predicted an increased risk of ex-
tinction in populations experiencing red noise relative
to those experiencing white noise, based upon the sim-
ple observation that in red noise long runs of ‘poor’
conditions for survival are more likely than they are
in white noise. Recent work has to some extent sup-
ported this observation using discrete-time population
models tracking colored variation generated by a first-
order autoregressive process (Johst and Wissel 1997,
Petchey et al. 1997, Cuddington and Yodzis 1999).
However, this trend is sensitive to the underlying dy-
namics of the modeled population (Ripa and Lundberg
1996, Petchey et al. 1997, Cuddington and Yodzis
1999), and to the noise model employed (Cuddington
and Yodzis 1999, Halley and Kunin 1999).

In this study, we analyzed the noise spectra of long-
term time series of a variety of environmental data from
different geographic regions. Our object was to be as
thorough as we could manage, attempting a catalog
with enough breadth and depth to serve as a test for
colored noise in environmental data, and as a guide for
interested modelers wishing to investigate the effect of
environmental noise, but lacking the appropriate data.

METHODS

We searched the print literature and the Internet for
time series of environmental data satisfying a number
of requirements. Firstly, there had to be enough points
to permit a meaningful spectral analysis. We chose 27

as the minimum number of points that could be of use.
As well, we sought data with regularly spaced points,
with ,10% missing. Finally, and importantly (in our
view), we tried to find data for as wide a variety of
environmental variables as we could, including aggre-
gate quantities such as averages and extrema of tem-
perature and precipitation, degree days (number of days
per month exceeding a certain threshold), and other
seasonal indices (such as area of ice cover, number of
days with snow, etc.), located over a wide variety of
geographic locations.

One hundred fifty-two data sets incorporated a va-
riety of environmental variables (Table 1), with lengths
ranging from 128 to 4056 samples (median 774) taken
at monthly intervals. Exceptions were eleven data sets
classified as seasonal indices, which were sampled an-
nually, or at 10-year intervals. Geographical origin of
the data was recorded, and sites were classified as ‘‘ma-
rine’’ or ‘‘terrestrial.’’ Terrestrial sites were subclas-
sified as ‘‘coastal’’ or ‘‘inland’’ depending on their
proximity to a marine coast (coastal data originated
from cities located directly on a marine coast, all others
were designated inland). Time series had on average
1.5% of data points missing (range 5 0–10%). Missing
data were filled in using linear interpolation.
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TABLE 1. Summary of variables used in this study.

Variable Description Origin Source

Air temperature mean monthly mean air temperature data North America and Eu-
rope

1–9

Air temperature maxi-
ma and minima

monthly maximum and minimum air temperature globally distributed 9–11

Precipitation total monthly accumulation globally distributed 3, 7–9, 11, 12
Sea surface temperature

mean
monthly mean sea surface temperature data Atlantic and Pacific

oceans
5, 13, 14

Sea surface temperature
maxima and minima

monthly maximum and minimum sea surface tem-
perature

Atlantic and Pacific
oceans

14

Degree days number of days per month with average air temper-
ature exceeding 158C

generaed from daily
data

9

Seasonal indices various aggregate measures of climate sampled an-
nually: area of ice cover, number of days with
snow, date of ice clearance, drought index, winter
severity index

Europe 12, 15, 16

Note: Sources are: (1) Linacre 1992; (2) Manley 1974; (3) Landsberg et al. 1968; (4) National Climate Archive, Environment
Canada (online, URL: ^http://www.climate.weatheroffice.ec.gc.ca&); (5) NOAA/National Weather Service, Climate Prediction
Center (online, URL: ^http://www.cpc.ncep.noaa.gov/&); (6) Fisheries and Oceans Canada, data from BC Lighthouses (online,
URL: ^http://www.pac.dfo-mpo.gc.ca/sci/osap/data/SearchTools/Searchlighthousepe.htm&); (7) University of East Anglia, Central
England Data Sets (online, URL: ^http://www.cru.uea.ac.uk/;mikeh/datasets/uk/engwales.htm&); (8) Southeast Regional Climate
Center, Historical Climate Summaries and Normals for the Southeast (online (URL: ^http://www.dnr.state.sc.us/climate/sercc/
climateinfo/historical/historical.html&); (9) National Climate Data Center (online, URL: ^http://www.ncdc.noaa.gov/ol/ncdc.
html&); (10) University of California, statewide integrated pest management project (online, URL: ^http://www.ipm.ucdavis.edu/
WEATHER/wxretrieve.html&); (11) British Antarctic Survey, Natural Environment Research Council (online, URL: ^http://
www.antarctica.ac.uk/&); (12) Lamb 1977; (13) Marine Life Research Group, Scripps Institution of Oceanography Shore Stations
(online, URL: ^http://www-mlrg.ucsd.edu/shoresta/index.html&); (14) NEMO, Oceanographic Data Server, Scripps Institution of
Oceanography (online, FTP: ^ftp://ccsweb1.ucsd.edu/pub/shore/pastpyears/&); (15) Lamb 1966; and (16) Manley 1978.

Seasonal variability was removed from monthly
samples by subtracting from each data point the mean
for the corresponding month taken over the total record
(see Chatfield 1989). This process was visually verified
to eliminate the spike in the spectral density function
at the annual frequency. Spectral densities were cal-
culated as in Priestley (1981) using a Parzen window
over the frequency interval n21 2 0.5 month21 [year21

or (10 3 year)21 for seasonal indices], where n rep-
resents the number of samples in the data set. The
spectral exponent, b, was estimated as the negative
slope of the linear regression of log10 spectral density
against log10 frequency. Slopes of all regressions were
significantly different than zero (P , 0.05). We tested
for pairwise differences in the distribution of spectral
exponents (b) for environmental variables (and loca-
tions) using the Wilcoxon rank-sum test (see Zar 1999).

We adopted the following terminology for noise col-
or in an effort to state patterns simply: ‘‘white’’ for 0
# b # 0.5, ‘‘red’’ for 0.5 , b # 1.5, and ‘‘brown’’
for 1.5 , b # 2.

RESULTS

The air temperature data span a wide range from
white to brown noise (Fig. 2). However, if we partition
the data sets for monthly mean temperature according
to proximity to the seas, we find white spectra at inland
(terrestrial) locations, red-brown noise at coastal lo-
cations, and for comparison, mostly brown noise for
sea-surface temperature (Fig. 3a). On the other hand,
monthly minima and maxima have mostly red spectra

at both coastal and inland locations, as well as in sea
surface temperature (Fig 3b, c).

Quite a variety of other environmental parameters
possess white, or at most ‘‘pink’’ (0.5 # b # 1), noise
in terrestrial environments (Fig. 2). These include total
monthly precipitation, degree days, and several sea-
sonal indices.

We found enough information for precipitation and
temperature extrema to group the data into latitudinal
categories. While several of the differences are only
marginally significant, we found a suggestive tendency
for precipitation, minimum temperature, and maximum
temperature to have the flattest spectra (smallest b) at
temperate locations, with steeper spectra both at high
and at low latitudes (Fig. 4).

DISCUSSION

To a considerable extent, our analysis upholds
Steele’s (1985) generalization that terrestrial noise is
white, while marine noise is reddened (red to brown).
In exception are locations proximal to a marine coast,
which show more reddened spectra than inland loca-
tions, and monthly extrema, which show red noise,
regardless of location. The first exception can be ex-
plained by the capacity of the sea to buffer much of
the high frequency variation evident in coastal terres-
trial locations, therefore reddening the environment. In
an analysis of environmental measures associated with
lakes and rivers, Cyr and Cyr (2003) found white, or
at most pink (b ø 0.5) spectra, which suggests that
these systems are strongly coupled to the terrestrial
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FIG. 2. Box plots of spectral exponents (b) for environmental variables (SST 5 sea surface temperature). Lines indicate
the median, 75th, and 90th percentiles, with outlying points (●), and sample sizes indicated below. Letters indicate significant
differences in the distribution of spectral exponents (b), where A is significantly different from B, but BC is not significantly
different than CD, etc. (Wilcoxon rank-sum test, a(2) 5 0.025). Environmental variables are described in detail in Table 1.

environment, as one would expect. The second excep-
tion to Steele’s generalization provides an interesting
similarity between extreme events in marine and ter-
restrial environments that may be as, or more, impor-
tant to their inhabitants than averages.

Crucial though it is to the dynamics of populations,
ecologists still have a rather limited understanding of
how organisms perceive their environment, and thus
how they respond numerically to changing environ-
mental conditions. From a modeling perspective, it is
likely that many, if not all, parameters that describe a
population’s rate of change may react to a change in
the environment. Stochastic processes in birth and
death rates (Johst and Wissel 1997), in carrying ca-
pacity (Ripa and Lundberg 1996, Petchey et al. 1997),
and in an additive density dependent term (Dennis and
Costantino 1988, Ripa and Lundberg 1996) have been
used to model the influence of environment on popu-
lation dynamics. However, it is likely that such quan-
tities will have nonlinear dependencies on actual en-
vironmental variables (e.g., measured temperature), or
will respond only outside a certain threshold, due to
the ability of organisms to buffer small changes. In
light of this, it is possible that extrema or aggregate
indices, such as degree days, measured at a relevant

time scale, will be more important to some organisms
than averages.

Another pressing question is: What is a relevant time
scale? Organisms with a short life span (e.g., one day)
cannot perceive the environmental variance measured
at monthly intervals, and alternatively, variance mea-
sured at the minute21 scale would be nearly inconse-
quential for organisms with long life spans (e.g., 10
years). One must also consider how indirect effects
might alter an organism’s perception of environmental
noise: Responses developing elsewhere in the food web
are passed through trophic relationships as numerical
responses, with some associated time lag, and ulti-
mately affect the entire food web. The issue of scale
then further complicates the response of an individual
or population to the environment, and makes that of a
community exceedingly difficult to perceive. We show
(mainly) monthly data here, not to imply that this time
scale is predominantly important, but to allow a com-
parison across variables while providing a meaningful
sample size.

The marginal trend in the latitudinally grouped data
generally showed flatter spectra in temperate locations
than in polar or equatorial regions. We cannot provide
a reasonable explanation for this trend. Although we
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FIG. 3. Box plots of spectral exponents (b) for (a) air
temperature mean, (b) maximum air temperature, and (c) min-
imum air temperature at inland and coastal locations. Lines
indicate the median, 75th, and 90th percentiles, with outlying
points (●), and sample sizes indicated below. For comparison,
sea surface temperature mean, maximum, and minimum are
shown. All differences in panel (a) are significant (a(2) 5
0.025), whereas all differences in panels (b) and (c) are non-
significant.

FIG. 4. Box plots of spectral exponents (b) for (a) pre-
cipitation, (b) maximum air temperature, and (c) minimum
air temperature grouped into latitudinal categories. Lines in-
dicate the median, 75th, and 90th percentiles, with outlying
points (●), and sample sizes indicated below. In general, tem-
perate locations are different from equatorial and polar re-
gions; however, some differences are only marginally sig-
nificant, due in part to small sample sizes.

did not detect any differences between terrestrial and
marine extrema, it is possible we are detecting an in-
creased influence of terrestrial (flatter) noise in tem-
perate locations. Nevertheless, further studies of this
trend may provide interesting results.

The ability of the 1/f b power law to fully describe
the variance spectra of our environmental time series
is questionable; the majority of variance spectra ana-
lyzed here (60%) showed a distinct ‘‘flattening’’ at low
frequencies (Fig. 5a, b). It is evident that an increase
in the lower frequency boundary of variance spectra,
from n21 to 5n21, can eliminate this flattening, indi-
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FIG. 5. Illustrative spectral densities for (a) monthly mean
temperature for a coastal terrestrial site displaying a distinct
flattening at low frequencies, b 5 0.65; (b) monthly mean
temperature for an inland terrestrial site without flattening, b
5 0.41; and (c) an autoregressive time series defined by ft11

5 aft 1 C(1 2 a2)0.5 3 «t11 where a 5 0.7, C 5 20, and «t11

is a random normal deviate with mean zero and unit variance,
b 5 1.02. Straight lines represent the 1/f b approximation.

cating a possibility that variation at the lowest fre-
quencies may be undersampled. Despite this, we have
no theoretical reason to alter the lower boundary in our
analysis, and the one we have used is customary in
analyzing climate data (C. Chatfield, personal com-
munication). The low-frequency flattening has a neg-
ligible effect on the significance of our regressions be-
cause log-transforming the (equally spaced) frequen-

cies produces a concentration of points at higher fre-
quencies.

While we cannot rule out the possibility that they
may be artifacts of the analysis, it is equally conceiv-
able that the flattened regions could indeed be a prop-
erty of the data. Frankignoul and Hasselmann (1977)
explained the observed ‘‘flattened’’ regions obtained
from their surface sea temperature data using negative
feedback in a stochastic model of atmospheric forcing;
feedback enabled the ocean to influence atmospheric
factors to stabilize the spectral densities at low fre-
quencies. Furthermore, the first-order autoregressive
stochastic process AR(1) is well known to have a spec-
trum that is ‘‘flattened’’ at low frequencies (Fig. 5c).
This difference between AR(1) and 1/f b spectra de-
pends on the correlation between events; correlation
decays exponentially with time in AR(1) processes, but
more slowly according to a power law in 1/f b processes.
Recent work has suggested that the difference between
true 1/f b and autoregressive AR(1) noise is not trivial
to population dynamics. Cuddington and Yodzis (1999)
showed that populations experiencing true 1/f b noise
had an increased mean persistence time for red and
brown noise, but that noise generated by an autore-
gressive process had the opposite effect of decreasing
mean persistence time (for populations with undercom-
pensatory dynamics). In contemplating the influence of
environmental variation on population dynamics, it
may be necessary not only to take noise color into
account, but also to consider the presence or absence
of a flattening at low frequencies.

On the whole, we find that 1/f b noise, possibly with
a flattening at low frequencies, is a good model for the
stochastic variation of a wide range of environmental
variables. It would be prudent for modeling exercises
to examine a range of colors, as well as to distinguish
‘‘flattened’’ spectra (conveniently generated as AR[1])
from true inverse power spectra (generated, say, by
spectral synthesis [Cuddington and Yodzis 1999]). Ul-
timately, we will have to address the really difficult
issue of just which environmental variables are partic-
ularly important for each given taxon of interest.
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